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Abstract 
This study explicitly considers that education is a multi-input multi-output production process subject 
to inefficient behaviors that can be identified at student level. Therefore a distance function allows us 
to calculate different aspects of educational technology. The paper presents an empirical application of 
this model using Spanish data from the Programme for International Student Assessment implemented 
by the OECD. The results provide insights into how student background, peer-group and school 
characteristics interact with educational outputs. Findings also suggest that, once educational inputs 
are taken into account; there is no statistically significant difference in efficiency levels across schools 
regarding public-private ownership.  
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Introduction 
 
Since the early 1960s (Carroll, 1963) a wide range of studies (e.g. Coleman (1966); Jenks (1972); 
Summers and Wolfe (1977); Hanushek, (1986, 1996, 1997, 2003); Pritchett  and Filmer, (1999)) have 
sought to define the relationship between school inputs, pupil’s background and achievement at 
school. Despite all the research devoted to this issue, the well-known debate, “Does school matter? - 
Does money matter?”, remains open. A great deal of evidence has established that a student’s 
education takes place both at home and at school. However, the way that a student’s own 
characteristics, home, peer-group and school interact with educational outputs continues to be largely 
unknown, and this is a serious drawback for policy-makers taking decisions about the allocation of the 
scarce public resources devoted to education. 
 

We can roughly summarize as follows the main reasons put forward in the literature as to why 
empirical work does not find systematic relationships between school inputs and outputs. First, 
education is a highly complex process with variables, such as organization or non-monetary inputs, 
implied in production (see Vandenberghe (1999) for a review). Second, there is the inconsistency of 
the use of Cobb-Douglas specifications for the estimation of educational production functions (see, for 
example, Eide and Showalter (1998), Figlio (1999) or Baker (2001)). Third, most production function 
studies into the economics of education do not consider the theoretically potential role of the 
efficiency component (Farrell, 1957; Leibenstein, 1966). And, last but not least, in empirical research, 
student results are typically aggregated at school or district level, imposing a considerable limitation 
on disentangling the effect of a student’s own background from peer-group and school inputs on 
student achievement1. 

 

In order to tackle the inefficiency issue in education, many studies use deterministic non-parametric 
Data Envelopment Analysis (DEA) in empirical evaluations. Pioneer studies applying DEA in 
education originate with Bessent and Bessent (1980), Charnes et al. (1981) and Bessent et al. (1982)2. 
Other studies have considered parametric methodologies, mainly using the Cobb-Douglas 
specifications, but also the translog functional form proposed by Christensen et al. (1971). These 
studies have included Jiménez (1986), Callan and Santerre (1990), Gyimah-Brempong and Gyapong 
(1992), Deller and Rudnicki (1993) and Grosskopf et al. (1997). The main advantage of the translog 
function is its highly flexible nature, which allows the study of interactions in the production process. 
Summers and Wolfe (1977) and Figlio (1999) used student level data in their econometric works; both 
concluded that student level is more appropriate than higher levels of aggregation. Their findings show 
that school inputs matter but that their impact on different types of student varies considerably.  

 

In order to overcome simultaneously the difficulties underlined here before, in this paper we propose 
the use of frontier analysis techniques, more precisely, a parametric stochastic distance function. 
Under this specification, we explicitly consider that education is a process in which students use their 
own and school inputs in order to transform them into academic results, subject to inefficient 
behaviors that can be identified at student level. Moreover, parametric stochastic distance functions, 
flexible by definition, allow us to deal simultaneously with multiple outputs, e.g. mathematics and 
reading test scores, and multiple inputs, including school inputs, student background and peer-group 
characteristics in a stochastic framework. We adopt here a translog specification to estimate the 
parametric stochastic distance function at student level. This allows us to calculate several aspects of 
educational technology, mainly distance elasticities with respect to outputs and inputs, and output 
elasticities with respect to inputs. Furthermore, the technology set in education implies monotonicity 
in outputs because a student cannot continue belonging to the frontier by reducing the vector of 
outputs holding the vector of inputs fixed. For this reason we explore the imposition of monotonicity 
on outputs through the estimated educational distance function at each data point. This imposition 
requires the computing of an additional distance measurement or distance slack for those points 
breaking the monotonicity assumption.  
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In order to illustrate the potentialities of the approach proposed here, we provide an application to 
Spanish educational data from the Programme for International Student Assessment (PISA) 
implemented in 2000 by the Organization for Economic Co-operation and Development (OECD). 
Spanish student performance has been shown to be poor, both in PISA 2000 and in other international 
studies3. Furthermore, Spain is one of the European Countries (EU-25) with the highest percentage, 
29.0%, among the 18-25 year old population either without a high school diploma, or who did not 
follow any other educational training4. These are puzzling results if we consider that 16 years old 
corresponds to the end of compulsory age schooling in Spain. For this reason, the PISA evaluations 
offer an exciting framework in which to analyze and to identify, as much as possible, the factors at 
work. 

 

Two of these factors will be the focus of our attention in this study. On the one hand, we explore in 
detail distance function and output elasticities with respect to school inputs, student background and 
peer-group characteristics and show that student achievements in reading and mathematics react 
differently. On the other hand, we investigate differences in student performance across Spanish public 
and private schools and conclude that, once school inputs, student background and peer-group 
characteristics are taken into account, there is no statistically significant difference in school efficiency 
distribution regarding public-private ownership. 

 

The paper is organized as follows: Section 2 provides an overview of educational production functions 
and presents the parametric stochastic distance function. Section 3 is devoted to describing data and 
provides results and a discussion of our empirical analysis. Finally, the paper ends with a summary 
and explores directions for further research. 

 

1. Estimating an educational production function through distance functions  

In most studies, a common conceptual framework for estimating the educational production function 
might take the following form (Levin, 1974; Hanushek, 1979): 

( )isissisis IPSBfA ,,,=  (1) 

where isA   equals the achievement of student i at school s, isB  is the student’s background, sS  are 
school inputs, isP  denotes the peer-group effect, and isI  are student innate abilities. Most often, 
equation (1) is estimated at school level. This analysis typically aggregates student inputs and 
achievements belonging to each school as an average by school, or even by school district when some 
non-controllable inputs are not observable at school level. 

 

In this paper we propose to use parametric stochastic distance functions at student level in order to go 
further in the analysis of production functions in education. For this purpose equation (1) becomes: 

( ) iissisisis IPSBAgD .,,,=  (2) 

where g represents the best practice technology used in the transformation of educational inputs in 
outputs, and isD  is the distance that separates each student from the technological boundary. 
Unobservable student innate abilities, iI , are assumed to be randomly distributed in the population 
and to influence individual performance in a multiplicative way. This simple transformation places the 
empirical estimation of equation (2) naturally within the framework of parametric stochastic frontier 
analysis (SFA), which, under specific distributional assumptions, allows the disentangling of random 
effects from efficiency (distance to the frontier).  

 

In the particular case of educational production analyzed here, distance functions isD  are expected to 
capture individual student performance measured with respect to the estimated frontier benchmark. 
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However, disentangling student and school sources of poor performance is an identification issue. 
Several factors could be responsible for observed differences in performance, among them the effort 
and motivation put into education by teachers on the one hand and by parents and students on the 
other. Other factors relate to the overall role of institutions, including main pedagogical choices, 
organizational structure and incentive schemes, among others. Within the context of this study, we are 
particularly interested in the comparison between public and private school scores. 

 

The quality of public schools has recently been under scrutiny, with voices calling for the reform of 
the Spanish Law for Quality in Schooling (Ley Orgánica de Calidad de la Enseñanza). As in most 
other countries, there are three possible ways of financing a school in Spain: private schools, private 
schools financed by a public vouchers system (the so-called escuela concertada) and public schools. 
The argument calling for more private schools and for more public expenditure in education monitored 
by private hands is usually based on aggregate results, like those we obtained from PISA 2000, as 
presented in Table 1. 

 
(Table 1) 

 
A naïve interpretation of the descriptive results presented in Table 1 would bring us to conclude that 
there is a higher performance by private schools in terms of average scores, but also in terms of equity. 
The study presented here, based on the estimation of a parametric stochastic distance function, can 
provide the information to enable the confirmation or rejection of this assumption. 

 

1.1. The parametric stochastic distance function approach 

Defining a vector of inputs x = (x1, …, xK) ∈ ℜK+ and a vector of outputs y = (y1, …, yM) ∈ ℜM+, a 
feasible multi-input multi-output production technology can be defined using the output possibility set 
P(x), which can be produced using the input vector x: 

P(x) = {y: x can produce y}, which is assumed to satisfy the set of axioms depicted in Färe and 
Primont (1995). This technology can also be defined as the output distance function proposed by 
Shephard (1970): 

( ) ( ) ( ){ }xPy,x,:infy,xDO ∈>= θθθ 0  

If ( ) 1≤y,xDO , then ( )y,x belongs to the production set P(x). In addition, ( ) 1=y,xDO  if y is 
located on the outer boundary of the output possibility set.5  

 

Figure 1 illustrates these concepts in a simple two-output setting. Let us assume that two decision-
making units (DMU) in frontier analysis terminology, A and C, dispose of equal input endowments to 
perform outputs y1 (mathematics) and y2 (reading). Then C is efficient, ( ) 1=≡ CCO y,xD θ , because it 
lies on the boundary of the output possibility set, whereas A, an interior point, is inefficient at a rate 
given by the radial distance function ( ) OBOAy,xD AAO =≡ θ  where ( ) [ ]1;0, ∈≡θyxDO .  

 

(Figure 1) 

 

In order to estimate the distance function in a parametric setting, a translog functional form is 
assumed. According to Coelli and Perelman (2000), this specification fulfills a set of desirable 
characteristics: flexible, easy to derive and allowing the imposition of homogeneity. The translog 
distance function specification herein adopted for the case of K inputs and M outputs is:  
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where i denotes the ith unit in the sample. In order to obtain the production frontier surface we set 
( ) 1=y,xDO , which implies ( ) 0=y,xDln O . The parameters of the above distance function must 

satisfy a number of restrictions, among them symmetry and homogeneity of degree + 1 in outputs. 
This latter restriction indicates that distances with respect to the boundary of the production set are 
measured by radial expansions, as illustrated in Figure 1.  

According to Lovell et al. (1994), normalizing the output distance function by one of the outputs is 
equivalent to imposing homogeneity of a degree +1. Therefore, equation (3) can be represented as: 

( )( ) ),,,yy,x(TLyy,xDln MiiiMiOi δβα= ,       i = 1, 2,…,N, (4) 
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Rearranging terms, the function above can be rewritten as follows: 

( ) ( )yxDyyxTLy OiMiiiMi ,ln),,,,(ln −=− δβα ,    i = 1, 2,…, N, (5) 

where ( )y,xDln Oi−  corresponds to the radial distance function from the boundary. Hence we can set 
( )y,xDlnu Oi−=  and add a term iv  capturing for noise to obtain the Battese and Coelli (1988) 

version of the traditional stochastic frontier model proposed by Aigner, Lovell and Schmidt (1977) 
and Meeusen and van den Broeck (1977): 

( ) iMiiiMi yyxTLy εδβα +=− ),,,,(ln ,    iii uv +=ε , (6) 

where u = ( )y,xDln Oi− , the distance to the boundary set, is a negative random term assumed to be 

independently distributed as truncations at zero of the ( )20 u,N σ  distribution, and the iv  term is 
assumed to be a two-sided random (stochastic) disturbance designated to account for statistical noise 
and is distributed as iid ( )2,0 vN σ . Both terms are independently distributed 0=uvσ .6  

But these are the normal assumptions given to iu  and iv  error terms in frontier analysis literature 
dealing with the technical efficiency of firms in production. What is the interpretation we can give to 
these error terms in the particular case of student performance as discussed here? As indicated in 
Section 1, we think that they allow for a straightforward interpretation.  

 

On the one hand, the stochastic term iv  is expected to capture unobserved student characteristics, 
mainly innate abilities, but also aptitude regarding the performance of tests and luck, as well as family-
specific circumstances (e.g. parents’ workplace status or family problems at home potentially affecting 
a student’s results but not captured by the model). All of these characteristics are assumed to be 
distributed normally at random in the population.  

 

On the other hand, the distance function term iu  is expected to capture students’ and teachers’ efforts 
and motivation as well as school performance and organization, not explained by input endowments, 
to be included in the distance function.  

 

The emergence of inefficiencies in education can be outlined in the following way. Firstly, different 
methodologies exist to teach different subjects. However, not all pedagogical tools are equally 
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productive for all students or all circumstances. Secondly, teachers are not homogenous or perfectly 
interchangeable for transforming educational inputs into academic results. Moreover, their efforts and 
motivation are likely to depend on financial incentives, as is the case in other production and service 
activities. Thirdly, factors such as effort, preferences, motivation or interest in learning and further 
education are not the same for all students, nor is the level of parent surveillance evenly distributed 
(controlling homework, skipping classes, assessment of education, conflicts and activities outside 
school). Last but not least, there is the role of educational institutions, which are nowadays considered 
the main explanatory factor for observed international differences in student achievement. This is 
particularly the case for institutions with a system that favors homogeneity in classroom composition, 
by means such as tracking students at an early age (Hanushek and Wossmann, 2005) or allowing 
private-public school competition (Nechyba, 2000). 

 

Coming back to equation (6), note that, in practice, the parameters of the model are estimated together 
with two other parameters, 2σ  and γ , using a maximum likelihood analysis where, according to 
Battese and Corra (1977), 222

uv σσσ += , ( )2
u

2
v

2
u σσσγ += .7  

 

Using this information it is worthwhile analyzing the variance decomposition of the estimated 
endogenous variable ( )Miŷln−   in equation (6) denoted by 2

MyS  as follows: 

2222 ˆˆˆ
uvTLy SSSS

M
++= , (7) 

where 2ˆ
TLS  denotes the percentage of variance of the left hand term in equation (7) explained by the 

estimated translog educational production model [ ])ˆ,ˆ,ˆ,yy,x(TL Miii δβα  in the mean inefficiency 

value, 2ˆ
uS  captures the percentage of variance in the response corresponding to the inefficiency term 

[ ]D̂ln−  and finally 2ˆ
vS  denotes the percentage of variance explained by the random error term. The 

latter term is computed as )ˆˆ(ˆ 2222
vTLyu SSSS

M
+−= . To do this we calculate R-squared measures8 

defined as the proportion of the variation in the logs of the response chosen as numeraire explained by 
the three terms specified above.  

Furthermore, assuming that differences across school performance are independent of differences 
among student performance only detected at the intra-school level, 2

uŜ  can be decomposed through an 
analysis of variance as follows: 

222 ˆˆˆ
uWuBu SSS +=    (8)  

where 2ˆ
uBS  and 2ˆ

uWS  indicate the between-schools and within-schools inefficiency variance, 
respectively. Through this explanation of the variance of the endogenous variable we mainly seek to 
estimate the role of inefficiency in educational production.   

 

1.2. Computation of elasticities 

Once parameters of model (3) are estimated, it is interesting to calculate meaningful elasticities. In 
education, we are concerned with exploring three results: i) the elasticity of the distance function with 
respect to inputs and outputs; ii) the relative facility in substitution between outputs and the elasticity 
of each output with respect to each input; and iii) the elasticity between outputs themselves. Note that, 
in the general case under study here, the units of observation i are the students, the outputs miy  are the 
student performances in M subjects and the kix are individual input variables corresponding to family 
background, peer-group characteristics and school factors (note that the i subscripts are suppressed in 
this section in order to simplify the presentation). 
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First, the distance function elasticity with respect to each input (and each output) provides information 
about how increases in one input (output) translate into more or less inefficiency for each pupil. These 
values can be obtained using the following expressions: 
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Positive values of 
kx,Dr (

myDr , ) indicate that greater input (output) implies higher distance values or, in 
other words, more efficiency. Negative values indicate, by contrast, less efficiency. These expressions, 
as with the others presented in this section, are calculated at the individual level.  

 

It is also meaningful to measure how one output is marginally influenced by changes in inputs. Partial 
derivatives between output m and input k are obtained in the following way: 
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In addition, we can compute how one particular output varies from another output. This ratio reflects 
the slope of the production frontier between the two outputs at the observed achievement mix: 
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According to Grosskopf et al. (1995), the ratio of the marginal rate of transformation (or relative 
opportunity cost) to relative output mix is a normalized marginal rate of transformation and can be 
defined in terms of distance functions as: 

12

,, 21

21 yy
rr

NMRT yDyD
yy =                 (12) 

where values of 
21yyNMRT greater than unity reflect increasing difficulty in substitution between y1 

and y2, whereas values of less than one reflect output substitutability. 

 

2. An application to Spanish secondary schools 

2.1. Data 

In our empirical analysis, we use data from the Programme for International Student Assessment 
(PISA), implemented in 2000 by the OECD. The aim of PISA is to measure how well 15-year-old 
students are prepared to face up to the challenges of modern society. PISA tests students in the 
subjects of reading, mathematics and science. Because the home, school, and national contexts can 
play an important role in how students learn, PISA also collects extensive information about such 
background factors9. The entire database comprises 32 countries, but this study is limited to the 
Spanish case. The emphasis of PISA 2000 was on the assessment of reading literacy. This meant that 
the number of students evaluated in reading and other subjects (mathematics or science) was around 
55%. However, only two-ninths of students were assessed in both mathematics and science. This fact 
implies a trade-off between the number of outputs and the number of students retained in the analysis. 
The best compromise in order to illustrate the model proposed here was to select the reading and 
mathematics tests combination. Given that the target 15-year-old population tends to be enrolled in 
two grades, we selected for this study upper 10th grade students. To sum up, the analysis is based on a 
homogenous population composed of 2449 students attending 10th grade at 185 different schools, who, 
in the year 2000, completed the mathematics and reading PISA tests. 

 

It is worth noting that PISA is methodologically highly complex and it exceeds the aims of this paper 
to present a complete explanation of the procedures followed in the sampling design. Nevertheless, for 
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a complete review, OECD (2001, 2002) may be consulted. Table 2 displays descriptive information on 
the output and input measures used in the analysis. 

 

As mentioned above, we consider two outputs: the students’ scores obtained in the international 
mathematics and reading tests. As reported in Table 2, average reading scores were higher and at the 
same time less widely distributed than mathematics scores. 

 

(Table 2) 

 

Two school inputs were selected: on the one hand, the computer/student ratio (corresponding to the 
total number of computers in the school divided by the total enrollment) and, on the other hand, the 
teacher/student ratio (corresponding to the total teaching staff divided by the total school 
enrollment).10 We think that both inputs are plausible indicators for the level of physical and human 
capital inside each school. As most students in Spain spend their entire secondary education in the 
same school, we argue that specific school ratios are better input indicators than those obtained at the 
(10th grade) classroom level. As expected, the computer/student ratio varies dramatically across 
schools, from 0.9 to 31.0 per 100 students, but, less expectedly, the teacher/student ratio varies 
dramatically as well, from 3.62 to 17.67 teachers per 100 students.    

 

We consider five student background inputs. All of these variables are represented by indices that 
summarize the answers given by students to a series of related questions. Mother and father’s level of 
education corresponds to the International Standard Classification of Education (ISCED, OECD, 
1999). The original categories were redefined as four major possibilities: 1 = did not go to school; 2 = 
primary school completed; 3 = secondary school completed; and 4 = tertiary education completed. The 
cultural activities index was derived from how often students had participated in the following 
activities during the preceding year: visiting a museum or art gallery, attending the opera, ballet, a 
classical symphony or a concert, or watching live theatre. The cultural possessions index was derived 
from student reports on the availability of the following items in their home: classical literature, poetry 
books and works of art.11 Time spent on homework was also derived from student reports on the 
amount of time they devoted to homework per week in reading, mathematics and science. Together 
with this, and taking advantage of using student level data, we introduce a variable to control for 
potential peer-group effects. The variable considered here is the average mother’s level of education 
of the peers measured at class level. 

 

Given the nature and the treatment applied to the construction of these variables, their variation across 
the sample is limited. Even so, one can see in Table 2 that the highest variation corresponds to cultural 
activities. 

 
2.2. Model estimation 

A parametric output distance function was estimated assuming a stochastic translog technology, as 
indicated in Section 2. Homogeneity of degree +1 was imposed by selecting one of the outputs, the 
students’ scores in mathematics 1y  as the dependent variable, and the ratio 12 yy as the explanatory 
variable, instead of 2y , as described by equations (4) to (6). However, for presentation purposes, in 
Table 3 the parameters corresponding to 1y  are reported, as calculated by application of the 
homogeneity condition as in equation (3). 

 

Two different specifications were estimated in order to test the non-separability hypothesis among 
outputs and inputs. For this purpose, following Coelli et al. (1998), we conducted a generalized 
likelihood ratio test (LR), which allows contrasting whether or not input-output cross effect parameters 
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are statistically significant. The null hypothesis was retained on the basis of this test; therefore the 
results presented in Table 3 are those corresponding to the separable output distance function.12  

 

As is usual for the estimation of translog functions, the original variables, ( )21,mym =  and 
( )81,...,kxk = , were transformed in deviations to mean values. Therefore, first-order parameters in 

Table 3 must be interpreted as distance function partial elasticities at mean values. For instance, those 
corresponding to the reading and mathematics scores are positive and indicate that student 
performance or efficiency increase (distance functions increase) when, ceteris paribus, their reading 
and mathematics scores increase. The opposite effect is observed for the scores in all first-order 
coefficients on inputs that are negative. This indicates that, at least at mean values and regardless of 
second-order effects, student performance decreases (distance functions decreases) when inputs 
increase. All these first-order coefficients are significant, with the sole exception of both school inputs: 
computer/student and teacher/student ratios.  

 

Some general conclusions can, however, be drawn from these results without taking into account 
second-order coefficients affecting school inputs. Several of them are statistically significant, 
e.g. 22β , 12β and 23β , which correspond to the teacher/student ratio in its quadratic form and in 
interaction with the computer/student ratio and the mother’s level of education index, respectively. 

 

(Table 3) 
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In our case, a simpler Cobb-Douglas production function estimation would certainly be unable to 
discover cross effects between school inputs themselves or when combined with student background 
and peer-group inputs, and the conclusion would be “school does not matter”. Therefore, one of the 
major advantages of parametric output distance function analysis at student level is that it can provide 
additional insights into the educational production process, overcoming at the same time model 
misspecification problems. 

 

But before turning to a detailed analysis of elasticities, let us focus our attention on the statistics 
presented at the bottom of Table 3. The expected mean efficiency, computed as ( )[ ]εiuE −exp , is 
equal to 0.8821, which indicates average student efficiency measured with respect to the stochastic 
frontier model. Using the information and the notation presented in equations (7) and (8), after 
proceeding to some further calculations, we obtained the variance decomposition of the estimated 
response presented in Table 4.  

 

(Table 4) 

 

This decomposition is also illustrative of the model potentialities to be used in the policy orientation 
debate. It shows us that student achievements can mainly be explained by the model (59.2%), that is, 
by school, by student endowments introduced as input factors and, finally, by the ratio of actual 
outputs. The random term that we attributed to non-observable factors, such as individuals’ innate 
abilities, family circumstances or simply luck, account for only 7.8% of the total variance. Finally, 
estimated inefficiencies play an important role (33.0%), as expected, but these are mostly attributed to 
students (27.2 %), rather than to schools (5.8%). Remember, however, that this last decomposition is 
obtained under the strong assumption that schools are only responsible for differences in mean 
efficiency across the institution, and not at all for inefficiencies within them at student level.  

 

 

 

2.3. Elasticity estimations  

In this section, we present the results obtained by applying the elasticity equations (9) to (12) 
presented in Section 2.2. Given the flexible nature of the translog distance function, elasticities vary at 
each point and must be calculated for all observations in order to obtain a more convenient appraisal of 
the way they vary across the sample population. For presentation purposes only, inter-quartile 
elasticity values are reported here.  

 

First of all, Table 5 presents distance function elasticities with respect to outputs and inputs. A positive 
(negative) sign indicates how inefficiency increases (decreases) when the analyzed variable augments 
in at one point. As a general comment on these results, it appears that elasticity values are in all cases 
rather stable. From distance elasticities with respect to outputs we conclude that, ceteris paribus, 
increasing reading and mathematics achievement increases efficiency. This positive effect is greater 
for improvements in mathematics. On the input side, three background variables show very low 
negative elasticities and negative effects on efficiency, on mother’s level of education, and on cultural 
activities and possessions. However, the mother’s level of education variable is compensated for by 
the high positive effect of the peer-group (average mother’s level of education) variable. Moreover, 
out of the computer/student ratio that influences negatively student efficiency, input elasticities present 
high and positive values. And one of these is directly under the control of the educational institution: 
the teacher/student ratio, or, in other words, the size of school classrooms. For the median student, 
allocating one additional teacher per 100 students in each school would increase educational efficiency 
by around 4.3%. 
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(Table 5) 

 

The way in which individual inputs affect outputs, reading and mathematics tests scores, is presented 
in Table 6, following equations 10 and 11. The negative derivatives between outputs show that, once a 
student is placed in the production frontier, the effort to augment mathematics results implies, as 
would be expected, a loss in reading results. The effect is not as great in the opposite direction, with a 
slight reduction in mathematics results when increasing reading results. The output/input derivatives 
signs and sizes, reported in Table 6, vary according to the input being considered, but the results are 
consistent with those obtained in Table 5. For example, increases in the teacher/student ratio, father’s 
level of education, time spent on homework or average mother’s level of education, clearly affect 
student performance in the expected direction. Table 6 shows the direct impact of input increases in 
terms of PISA scores for the Spanish students. It seems that the effect of educational inputs on outputs 
is greater for mathematics than for reading, at least in the Spanish case. Here, in terms of international 
scores, students performed better in reading than in mathematics. If decision were to be taken on the 
allocation of scarce public resources in a choice between teachers and computers, these results could 
be useful. Increasing the teacher/student ratio would probably be our recommendation based on a 
favorable trade-off for improvement in efficiency and test scores.  

 

The positive effect of the peer-group over the two output variables brought into consideration the issue 
of school vouchers. It seems that, whatever a student’s socioeconomic background, a more favorable 
peer-group tends to increase results, especially in mathematics. It is not the aim of this paper to go into 
a deep discussion of these results but, summing up, it seems that this framework could be a valid tool 
for policy makers concerned with education in order to advance further in the improvement of levels 
of achievement in a particular country or region. 

 

(Table 6) 
 

The ratio of the marginal rate of transformation to the relative output mix 
21yyNMRT  was estimated as 

depicted in equation (12).  The computed mean value is less than one (mean = 0.73, with standard 
deviation = 2.98), and must be interpreted as outputs; reading and mathematics scores are around the 
mean value relatively substitutes. The high variance points out that a significant number of students 
show values greater than one, suggesting that, for a set of students, the decision on how much effort to 
devote to each subject could damage results in the other output. This occurs, for instance, if the student 
dedicates too much time to reading and disregards mathematics. Changes in individual motivations 
and preferences, or in teacher and parental requirements, can have the effect that the proportion of 
time devoted to educational instruction becomes more balanced according to each particular situation. 

 

2.4. Imposing curvature on the output distance function  

The estimation of an output distance function can violate regularity conditions, monotonicity and 
convexity, for some of the evaluated units. For this reason, once we have calculated partial elasticities 
with respect to the distance function and outputs, it is worth evaluating the results from the point of 
view of educational economics. In our case, the rupture of some of these conditions is perfectly 
interpretable in this educational context. For example, the negative sign of output elasticities with 
respect to some of the inputs can be interpreted as local input congestion. For instance, it is possible 
that additional time spent on the computer reduces the amount of time devoted to reading 
comprehension or to solving mathematics exercises.  

 

However, one assumption that must be maintained in education is monotonicity in outputs. In 
educational production theory it is inconsistent that a student could reduce both outputs remaining on 
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the production frontier. The lack of theoretical sense of this result leads us to evaluate the estimations 
obtained at each observation. Following O’Donnell and Coelli (2005), monotonicity conditions 
involve constraints on distance function partial derivatives in equation (1) with respect to outputs: 
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In order for D to be non-decreasing in y, it is required that 0≥mr . For illustration purposes, in Figure 
2 we show the empirical deterministic output distance function for the mean student.     

(Figure 2) 

As we can see in Figure 2, there are a number of pupils (153 cases) where monotonicity in outputs 
does not hold and the slope of the distance function becomes positive. This is probably due to the fact 
that, in real life, with very few exceptions, there are no pupils with outstanding results in reading 
(mathematics) and extremely bad results in mathematics (reading). If we fail to take this fact into 
account, we can underestimate inefficiency levels for those students projected at the stretches of the 
production frontier, which are breaking the monotonicity assumption in outputs.   

 

In order to overcome this difficulty, one solution is to impose monotonicity conditions on outputs 
through the partial derivatives of distance function with respect to outputs adding up an inefficiency 
slack. In the case of our two outputs, and assuming separability, we have: 
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The slope of the distance function between the two outputs can be denoted as: 
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This expression fulfills monotonicity in outputs when 0
12
≤yyMRT . For imposing monotonicity in the 

empirical estimation we force up the slope of the deterministic production frontier to make it negative. 
To do this we evaluate the monotonicity conditions for each student. The process is shown graphically 
in Figure 3. 

 
(Figure 3) 

 
 

Theoretically, when a point exhibits a positive slope in the deterministic production frontier, then we 
can re-estimate the distance for the strict output distance function, which characterizes the fulfilling of 
monotonicity along the entire frontier. This implies the adding up of a distance slack ( )yxDSlack

Oi ,ln−  
for the points projected against a section of the deterministic output distance function with a positive 
slope (A and B in Figure 2). We proceed in the following way. The first step is to equal the partial 
derivatives of pupils that do not fulfill monotonicity to be zero. 
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The second step is to calculate the output point in the strict frontier with the condition that the output 
ratio remains fixed. According to Figure 3, this step implies the calculus of A’’ (B’’) with respect to 
point A (B). To do this, we impose r1 or r2 to be zero, depending on the position of the student (A or 
B) on the production set.  
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strict deterministic production frontier through the exogenous ratio of outputs 
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yy ln~ln~ln . Finally, we correct distance values of these students adding up the distance 

slack ( )yxDSlack
Oi ,ln−  that separates the estimated production frontier from the strict production 

frontier, which is graphically measured by the distance between OA’ (OB’) and OA’’ (OB’’). 
Following these steps, we calculate distance slacks in terms of additional inefficiency for some of the 
pupils in our sample. Results are shown in Table 7.  

 

(Table 7) 

 

Descriptive statistics show that the number of students that violate the monotonicity assumption is 
rather low (around 6% of the total). We corrected the biased estimated distance for 153 students. Most 
of them (134) presented extremely bad results in mathematics (points around A in Figure 3), while 
only 19 were in the opposite situation, with very low results in reading (points around B). The 
importance of inefficiency slacks when present is far from negligible, with a mean value of around 
13.5%. However, mean slack in mathematics is around 10% of additional inefficiency, while slack in 
reading is greater, with a mean inefficiency of 37.7%. The corrected inefficiency values will be used in 
the analysis provided in the next section. 

 

2.5. Does school ownership matter? 

Finally, we focus our attention once again on school ownership. Table 8 reports school level average 
efficiency results by school type, which must be compared with descriptive statistics presented in 
Table 1. What can we learn from this comparison? Overall, that once school inputs, student 
background and peer-group, are taken into account, the observed differences across schools, as 
distinguished by ownership, vanish. 

(Table 8) 

 

This does not mean that the information was wrong, but that, if students attending private schools 
obtained better results, this was as a direct consequence of more favorable conditions: better family 
background, peer-groups and school inputs. Furthermore, a well-known selection process is at work in 
Spain, as well as in other countries, that offers the choice between public and private schools. As a 
consequence, public schools accept a higher percentage of students with less favorable backgrounds, 
e.g. foreigner populations with language difficulties and special needs. As the estimated parametric 
stochastic distance function model takes into account these and other student characteristics, public 
schools take as a benchmark this less favorable context and, as expected, their efficiency scores are 
better than when directly compared to private school scores in Table 1.  

 
3. Concluding remarks 

A comprehensive review of the literature of educational economics shows that the process of 
transforming educational inputs into test results is highly complex and little understood. Despite this 
generalized result, most studies continue to apply the traditional Cobb-Douglas analysis at school 
level. In this paper, we have proposed the use of frontier analysis techniques, more precisely, a flexible 
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parametric stochastic distance function, in order to overcome the main criticisms directed at these 
studies. Moreover, we explicitly consider that education is a process in which students use their own 
and school inputs in order to transform them into academic results, subject to inefficient behaviors that 
can be identified at student level. We applied this methodology to the Spanish case using 15-year-old 
student tests scores and background data available from the PISA Project implemented by the OECD 
in 2000. The main results of this study can be summarized as follows: 

1. Individual student achievements are explained, at a rate of 59%, by the education production model 
itself. The random term that we attributed to non-observable factors, such as an individual’s innate 
abilities or family circumstances, accounts for only 8% of the total variance. Finally, 33% was the 
share attributed to the inefficiency component. According to this result, we think that the potential role 
of inefficiency in education should not be omitted from educational production models.   

2. Several factors could be responsible for the observed differences in performance, among them the 
effort and motivation put into education by both teachers and students. Within the context of this 
study, we were particularly interested in a comparison between public and private school scores. The 
results showed that, in the case of Spain, the observed differences in favor of private schools were 
mainly accounted for by differences in school inputs, student background and peer-group 
characteristics considered as production factors in the education process. 

3. The analysis conducted here reveals that school inputs matter, but that their effects are better 
captured with a translog specification, a non-linear second-order approximation, which takes into 
account the multi-output multi-input nature of education production. Only a detailed analysis of 
elasticities between distance functions, outputs and inputs revealed to us the complex interactions 
between them. One result of this analysis shows that the elasticities of reading and mathematics scores 
with respect to class composition had a positive straightforward effect on students’ mathematics and 
reading achievement. This result leaves open for further research the convenience of a school voucher 
system and the quantification of “cream-skimming” in private schools financed by public funds. 
Another noteworthy finding is that the debate about which is the best way to spend public resources in 
school will need additional investigation. However, in general we cannot conclude that more money 
devoted to school resources is always effective whatever its allocation. 

4. The rupture of the assumption of monotonicity in outputs cannot be admissible from the point of 
view of educational economics theory. In order to avoid this inconsistency, we propose in this paper a 
method for correcting the estimated distance through the calculation of distance slacks for the points 
that break this theoretical requirement.      

 

To sum up, we think that the conceptual framework presented in this paper, based on the estimation of 
parametric stochastic output distance function, provides an appealing methodology for enhancing our 
understanding of the education process as it is subject to inefficiency. Furthermore, the measurement 
of educational technology and efficiency at student level sheds light on how to distribute school 
vouchers. From this point of view, we think that public schools have an important role to play in the 
allocation of school inputs according to student background. 

                                                 
1 Hanushek et al. (1996) showed how aggregation can dramatically influence upwards the statistical significance 

of inputs in the educational process. 

2 For an overview, Worthington (2001) provides an empirical survey of frontier efficiency techniques in 

education. 

3 For example, in the Third International Mathematics and Science Study (TIMSS) carried out in 1995, Spain 

performed in science and mathematics as rankings 27 and 31, respectively, in a survey of 41 countries. For an 

extensive review of all results of the TIMSS, see Gonzalez and Smith (1997). 
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4 For illustration purposes, note that, for Portugal, the percentage is 45.5%, for Poland 7.6% and for Hungary 

12.2% (MEC, 2004). 

5 Input distance functions can be defined in a similar way assuming input orientation and given output 

endowments. 

6 In order to estimate this model we used the computer program Frontier V4.1 developed by Coelli (1994), 

assuming that u was distributed as a semi-normal.  

7 For more details on these transformations, see Dios-Palomares (2002). 

8 Coelli and Perelman (1999) define the R-squared measure in terms of the logs of the radial distance. In the case 

of education, we think that is preferable to decompose the variance of the educational output into three 

components: i) the production model; ii) the distance or inefficiency score; and iii) the random noise.  

9 Unfortunately there is no information about IQ scores so we assume that innate ability is distributed normally 

among students regardless of other factors. 

10 Full-time and part-time teachers are accounted for by 1.0 and 0.5, respectively. 

11Examples of each of these items were given to the students. 

12 In this case, the null hypothesis is rejected if the LR test exceeds 2
8χ (α). For α=0.05 the critical value is 15.5, 

and we obtained LR = 10.74. The assumption of separability implies that the curvature of the production frontier 

is not affected by changes in scale. 
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Table 1 
Mathematics and reading scores by school type 

Spain, 2000 

School type N Mean Standard 
deviation Minimum Maximum 

Mathematics scores 

Private, government independent 16 539.09 34.23 468.22 589.44 

Private, government dependent 56 510.11 39.80 401.97 577.87 

Government 113 495.27 37.42 338.60 573.86 

All 185 503.55 39.83 338.60 589.44 

Reading scores 

Private, government independent 16 557.15 29.03 499.69 616.65 

Private, government dependent 56 529.68 37.25 439.78 596.38 

Government 113 513.27 38.01 388.43 582.82 

All 185 522.03 39.18 388.43 616.65 
Note: Mean differences are statistically significant, at 95% level, with F-test=10.5 and 11.5 for mathematics and 
reading, respectively. We cannot reject the hypothesis that variances are distributed homogenously, at 95% level, 
with Levene’s test=0.169 and 0.587 for mathematics and reading, respectively. 
 
 
 

Table 2 
Descriptive statistics: outputs and inputs at student level in Spain 

Outputs and inputs Variable Mean Standard 
deviation Minimum Maximum 

Outputs 

Mathematics score y1 505.3 82.9 202.1 815.9 

Reading score y2 524.0 74.3 241.4 741.9 

Inputs 

School      

Computers / 100 students x1 6.36 4.10 0.90 31.00 

Teachers / 100 students x2 7.59 2.36 3.62 17.67 

Background      

Mother’s level of education x3 2.79 0.78 1.00 4.00 

Father’s level of education x4 2.89 0.82 1.00 4.00 

Cultural activities x5 2.54 1.17 1.00 5.00 

Cultural possessions x6 3.08 0.99 1.00 4.00 

Time spent on homework x7 3.37 0.81 1.00 4.00 

Peer-Group      

Average mother’s level of 
education x8 2.88 0.43 1.90 4.00 
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Table 3 
Parametric output distance function estimations 

Variables and parameters t-ratio Variables and parameters t-ratio 

Intercept α0 -0.1429 19.52 Inputs (Cont.)    

Outputs    (ln x1)(ln x5) β15 0.0188 1.98 

ln y1 (mathematics score) α1 0.3757  (ln x1)(ln x6) β16 -0.0152 1.28 

ln y2 (reading score) α2 0.6243 41.45 (ln x1)(ln x7) β17 -0.0166 1.01 

(ln y1)2 α11 1.5089  (ln x1)(ln x8) β18 -0.0857 2.26 

(ln y2)2 α22 1.5089 17.38 (ln x2)(ln x3) β23 -0.0601 1.69 

(ln y1)(lny2) α12 -1.5089  (ln x2)(ln x4) β24 0.0616 1.69 

Inputs    (ln x2)(ln x5) β25 -0.0073 0.42 

ln x1 (computers/students) β1 -0.0002 0.05 (ln x2)(ln x6) β26 -0.0159 0.75 

ln x2 (teachers/students) β2 -0.0046 0.54 (ln x2)(ln x7) β27 0.0017 0.06 

ln x3 (mother’s level of 
education) β3 -0.0357 3.35 (ln x2)(ln x8) β28 0.1638 2.42 

ln x4 (father’s level of 
education) β4 -0.0214 1.90 (ln x3)(ln x4) β34 -0.0570 1.96 

ln x5 (cultural activities) β5 -0.0414 7.79 (ln x3)(ln x5) β35 0.0005 0.03 

ln x6 (cultural possessions) β6 -0.0288 2.94 (ln x3)(ln x6) β36 0.0185 0.75 

ln x7 (homework) β7 -0.0209 1.77 (ln x3)(ln x7) β37 -0.0063 0.22 

ln x8 (peer-group) β8 -0.1497 7.81 (ln x3)(ln x8) β38 0.0240 0.30 

(ln x1)2 β11 0.0124 1.17 (ln x4)(ln x5) β45 -0.0074 0.40 

(ln x2)2 β22 0.1620 3.11 (ln x4)(ln x6) β46 -0.0162 0.70 

(ln x3)2 β33 0.0930 2.01 (ln x4)(ln x7) β47 0.0121 0.43 

(ln x4)2 β44 0.0250 0.59 (ln x4)(ln x8) β48 0.0879 1.15 

(ln x5)2 β55 -0.0576 2.72 (ln x5)(ln x6) β56 0.0066 0.54 

(ln x6)2 β66 -0.0189 0.70 (ln x5)(ln x7) β57 0.0288 1.82 

(ln x7)2 β77 0.0015 0.04 (ln x5)(ln x8) β58 -0.0293 0.79 

(ln x8)2 β88 0.0204 0.09 (ln x6)(ln x7) β67 0.0322 1.86 

(ln x1)(ln x2) β12 -0.0656 3.70 (ln x6)(ln x8) β68 -0.0322 0.68 

(ln x1)(ln x3) β13 -0.0079 0.43 (ln x7)(ln x8) β78 -0.0323 2.86 

(ln x1)(ln x4) β14 0.0106 0.58     

Other ML parameters γ  0.8067 30.84  

 
2σ

 
0.0286 19.17 

Expected mean 
efficiency 0.8821 

 

Note: Underlined parameters are calculated by applying imposed homogeneity conditions.  
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Table 4 
Estimated variance decomposition 

Variance components Shares 

Model 2ˆ
TLS   59.2 % 

Random term 2ˆ
vS    7.8 % 

School inefficiency 2ˆ
uBS    5.83 %  

Student inefficiency 2ˆ
uWS  27.17 %  

Total inefficiency 2ˆ
uS   33.0 % 

Total Variance 2ˆ
MyS   100.0 % 

 
 
 

Table 5 
Distance function elasticities 

Inter-quartile values 
Outputs and inputs 

25% 50% 75% 

With respect to outputs (
my,Dr ) 

Mathematics score (y1) 0.0009 0.0011 0.0013 
Reading score (y2) 0.0003 0.0006 0.0008 

With respect to inputs (
kx,Dr ) 

School    

Computers / 100 students (x1) -0.0511 -0.0339 -0.0256 
Teachers / 100 students (x2) 0.0356 0.0429 0.0523 
Background    

Mother’s level of education (x3) -0.0484 -0.0303 -0.0195 
Father’s level of education (x4) 0.0414 0.0519 0.0700 
Cultural activities (x5) -0.0276 -0.0236 -0.0198 
Cultural possessions (x6) -0.0311 -0.0233 -0.0190 
Time spent on homework (x7) 0.0439 0.0525 0.0653 
Peer-Group    

Average mother’s level of 
education (x8) 0.0802 0.0968 0.1149 

 
 



 20

Table 6 
Output/output and output/input derivatives 

Mathematics 
Inter-quartile values 

Reading  
Inter-quartile values Inputs 

25% 50% 75% 25% 50% 75% 

Output with respect to output (
nm yys , ) 

Mathematics score (y1) - - - -3.03 -1.73 -1.02 

Reading score (y2) -0.80 -0.50 -0.24 - - - 

Output with respect to input (
km xys , ) 

School       

Computers / 100 students (x1) -106.38 -59.51 -33.36 -50.31 -31.90 -20.38 

Teachers / 100 students (x2) 47.53 72.01 115.25 29.03 38.93 52.93 

Background       

Mother’s level of education 
(x3) -89.33 -49.18 -26.73 -43.16 -27.38 -17.06 

Father’s level of education (x4) 56.49 87.22 145.08 35.49 47.18 64.56 

Cultural activities (x5) -59.50 -37.98 -25.11 -27.31 -20.99 -15.75 

Cultural possessions (x6) -66.32 -40.53 -26.62 -30.41 -21.38 -16.05 

Time spent on homework (x7) 57.23 88.63 141.11 35.76 47.63 65.79 

Peer-Group       

Average mother’s level of 
education (x8) 102.29 157.80 243.16 65.30 86.56 111.22 

 
 
 
 

Table 7 
Descriptive statistics for estimated distance slacks in mathematics and reading 

Distance Slack  N Mean Standard 
deviation Minimum Maximum 

Slacks in mathematics (r1 = 0) 134 0.100 0.100 0.001 0.449 

Slacks in reading (r2  = 0) 19 0.377 0.076 0.295 0.539 

Total 153 0.135 0.133 0.001 0.539 
 



 21

Table 8 
Efficiency and school ownership 

School type N Mean Standard 
deviation Minimum Maximum

Private, government independent 16 0.8865 0.0304 0.81 0.93 

Private, government dependent 56 0.8795 0.0268 0.82 0.93 

Government 113 0.8775 0.0362 0.71 0.94 

All 185 0.8854 0.0331 0.71 0.94 
Note: Mean differences are not statistically significant, at 95% level, with F-test=0.522. Variances are 
distributed homogenously, at 95% level, with Levene’s test=0.837. 

 
 
 

Figure 1 
Output possibility set P(x) 
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Figure 2 
The deterministic output distance function at the mean student 
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Figure 3 
The deterministic output distance function: a measurement of distance slack  
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