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Abstract 

The quality of electricity distribution is being more and more scrutinized by regulatory 

authorities, with explicit reward and penalty schemes based on quality targets having 

been introduced in many countries.  It is then of prime importance to know the cost of 

improving the quality for a distribution system operator.  In this paper, we focus on one 

dimension of quality, the continuity of supply, and we estimated the cost of preventing 

power outages. For that, we make use of the parametric distance function approach, 

assuming that outages enter in the firm production set as an input, an imperfect 

substitute for maintenance activities and capital investment. This allows us to identify 

the sources of technical inefficiency and the underlying trade-off faced by operators 

between quality and other inputs and costs. For this purpose, we use panel data on 92 

electricity distribution units operated by ERDF (Electricité de France - Réseau 

Distribution) in the 2003–2005 financial years. Assuming a multi-output multi-input 

translog technology, we estimate that the cost of preventing one interruption varies 

substantilly among the distribution units from 2.7 € to 15.7 €.  Furthermore, as one 

would expect, marginal quality improvements tend to be more expensive as quality itself 

improves. 
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INTRODUCTION  

The frequency and the duration of power outages are the two key measures of quality 

that electricity distribution utilities pay particular attention to.  Other than the direct 

costs of outages, represented by opportunity costs and repair expenditures, there is also 

a regulatory cost as regulators more and more impose bonuses and penalties based on 

service quality performance. This is for instance the case in France, Germany, Italy and 

the UK. To prevent outages and these related costs, operators have two main 

possibilities, either to increase maintenance or to make new investments, e.g. replace 

overhead lines by underground lines. In this paper we are mainly interested in this issue 

and, more precisely, in the way that electricity distribution operators anticipate and 

prevent potential outages by increasing maintenance activities and/or capital 

investments. For that, we will estimate the cost, expressed in operational expenditures, 

of preventing outages for each distribution system operator.  

 We make use of the parametric distance function approach proposed in the activity 

analysis literature to deal with undesirable outputs (Färe et al., 1993). The same 

approach is applied here, but instead of assuming that outages are an undesirable 

output, we assume that they enter in the firm production set as an input, i.e., that 

outages are an imperfect substitute for maintenance activities and investment. 

Therefore, following Growitsch et al. (2009), we postulate that the corresponding 

distance function is input oriented. This allows us to identify the underlying trade-off 

faced by operators, between quality and other inputs and costs. 

In this study we use panel data on 92 electricity distribution units operated by ERDF 

(Electricité de France - Réseau Distribution) in France in the 2003–2005 financial years. 

Compared with similar studies, we have access to very comprehensive and comparable 

data, in particular on the value of capital. This database allows us to estimate a flexible 

translog multi-output multi-input technology. On the output side, we chose a 

specification that takes into account the main output dimensions of the electricity 

distribution activity: i) the number of customers; ii) the surface area served and; iii) the 

GWh of electricity distributed. On the input side, the three dimensions retained are: i) 

operational expenditures; ii) capital; and iii) quality, represented by the number of 

interruptions (longer than 3 minutes in duration). 
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We use for computation purposes, a stochastic frontier approach (SFA) as well as a 

parametric (deterministic) linear programming approach (PLP). Both approaches give 

similar results, on average. With the SFA approach we can take into account the 

influence of random noise and also test at the same time the effect of potential 

explanatory factors on technical efficiency using the Battese and Coelli (1995) model. 

However, standard SFA does not allow the imposition of restrictions implied by 

economic theory, particularly monotonicity. In our SFA estimations, the monotonicity 

requirements are not satisfied for all observations. We have thus developed a 

methodology to integrate the monotonicity constraints in a simple and convenient way 

using the deterministic PLP approach.    

Regulators have now started to use explicit benchmarking methods to regulate the 

energy distribution companies (see Farsi et al., 2007 for a description). Our models 

completely benchmark the French Distribution System Operators (DSO) taking into 

account the quality issue and the results of the SFA model indicate that technical 

efficiency (TE) is positively correlated with the share of underground lines and with the 

age of capital. Furthermore, using the computed PLP translog parameters, several 

measurements are done that allow us to describe the main characteristics of the 

underlying production technology. Among others, we estimate the distance function 

elasticities with respect to inputs and outputs at each point of the boundary surface. 

These elasticities can be used to determine the main cost drivers of the operators. 

Results indicate that, when customer density is high, the main cost driver is the number 

of clients while increasing the electricity delivered requires little input expansion, 

presumably because the grid is dense and well interconnected. However, when 

customer density is low and network interconnection less numerous, both the number 

of clients and the electricity delivered are identified as the main cost drivers. 

Finally, we derive from the underlying production technology the shadow prices for the 

quality (outages) measures, that is the marginal rate of substitution between quality and 

the other inputs. These results are potentially useful for the operators themselves, who 

can obtain information regarding the marginal cost of reducing interruptions. They are 

also useful for regulators, who could use them for the design of incentive schemes that 

incorporate quality measures.1 
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For France, the average shadow price of quality is estimated to be 5.1€, meaning that it 

costs the DSO an additional 5.1€ to prevent one interruption. Our results show that the 

estimated shadow price of quality varies substantially: from 2.7 € to 15.7 € among the 

DSOs. Furthermore, as one would expect, marginal quality improvements tend to be 

more expensive as a network approaches 100% reliability i.e. the cost of quality function 

is a convex function. 

The remainder of the paper is organized as follows. In Section 2 we survey the literature 

on benchmarking analyses in electricity distribution including service quality while 

Section 3 describes the electricity distribution sector in France. Sections 4 and 5 present 

the methodology and the data used in estimation, respectively. In Section 6 we report 

the main results of this study and in Section 7 we draw some conclusions.  

 

2 RELATED LITERATURE 

 

Most benchmarking analyses in electricity distribution have involved models that 

incorporate standard output characteristics, such as energy supplied (in GWh), number 

of customers and network size (e.g., service area or network length). For example, see 

the literature review in London Economics (1999) and Jamasb and Pollitt (2001). Very 

few studies have included quality of service measures in these models. Some exceptions 

are the studies by Giannakis et al. (2005), Growitsch et al. (2009), Coelli et al. (2007) and 

Jamasb et al. (2010).  

Giannakis et al (2005) use data envelopment analysis (DEA) methods to measure 

technical efficiency (TE) and total factor productivity growth (TFP) in 14 UK distribution 

companies over the 1991/92 to 1998/99 period. The DEA method is used to estimate a 

non-parametric input distance function that involves three output variables (energy 

supplied, customers and network length). Four models involving different input sets are 

considered: (i) operating expenditure (OPEX); (ii) total expenditure (TOTEX); (iii) 

number of interruptions (NINT) and total time lost due to interruptions (TINT); and (iv) 

TOTEX, NINT and TINT. They find that the TE scores of the various models are positively 

(but not perfectly) correlated, and that the TE scores rise when the NINT and TINT 

quality variables are added to the TOTEX model (a result that is to be mathematically 

expected when variables are added to a DEA model).2  
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Growitsch et al (2009) use stochastic frontier analysis (SFA) methods to estimate an 

input distance function using data on 505 electricity distribution utilities from eight 

European countries in the 2002 financial year. Their models contain two output 

variables (energy supplied and customers) and either one input variable (TOTEX) or 

two input variables (TOTEX and TINT). They use the Battese and Coelli (1995) SFA 

model to investigate the effects of customer density (customers per network km) and 

country (using dummy variables) upon technical efficiency scores. They find that the 

inclusion of the quality variable reduces TE for all but the large firms, plus they find that 

the TE scores from the two models are significantly negatively correlated, both findings 

being in contrast to those of Giannakis et al (2005). 

Jamasb et al. (2010) estimate the marginal cost of quality improvements of 12 UK 

distribution companies for the period 1995-2003. For that, they run fixed-effect 

estimations of the link between the cost of electricity distribution (identified with 

TOTEX, OPEX or CAPEX) and a series of cost drivers including the energy delivered, the 

network length, the network energy losses, the customer minutes lost and a time trend. 

They found that the marginal cost of quality is positive and, on average, equal to 25.6 

pence per minute lost. This estimated marginal cost of improving quality is larger than 

the penalty set by the regulator for lower delivered quality. Consequently, the UK quality 

of service regulation does not provide enough incentives to increase the quality as the 

firms are better off paying the fine. Finally, the marginal cost of improving quality 

increases with the quality delivered, as expected.  

The above studies are to be commended for introducing quality variables into these 

benchmarking models. However, these studies contain some shortcomings. First, they all 

make use of TOTEX measures which contain capital expenditure (CAPEX) measures 

which need not reflect the actual amount of capital services consumed in a particular 

year. Second, the UK studies suffer from small sample size problems while the inter-

country study suffers from difficulties associated with deflating monetary values of 

TOTEX in order to obtain comparable measures of implicit input usage in each country. 

In the current study we aim to address these problems by making use of a detailed 

database on the activities of electricity distribution units operated by ERDF Réseau 

Distribution in France in the 2003–2005 financial years. With these data we thus avoid 

the small sample size problem and the international comparability problem.  
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Furthermore, we also have access to comprehensive and comparable data on the value 

of capital items, so we can avoid the need to use CAPEX to measure capital input 

services.3  

 

1. E

LECTRICITY DISTRIBUTION IN FRANCE 

 

In France, most electricity distribution grids are owned by municipalities, individually or 

grouped in communities. To organize the public service of electricity distribution, 

municipalities either delegate the network management to a third party DSO within the 

framework of a long-term concession contract or organize the service themselves. Most 

of the municipalities delegate the management of their network to ERDF4, a subsidiary 

of EDF, the historical electricity operator which is now publicly listed company. ERDF 

covers more than 95% of the territory while the remaining part is covered by local 

public companies.   

The concession contracts define the rights and obligations of the distributor regarding 

quality of supply, customers’ connections and environmental conditions. Public service 

requirements are the same all over the country and the contracts follow a similar model. 

The DSO is remunerated by the tariff applied to final users, which is supposed to cover 

operating costs and investments. This tariff is the same for all the concessions (one 

single price for all the customers in France) and for all DSOs. The rates for the use of 

public electricity grids, including transmission and distribution networks, are set 

periodically by the French Regulator, the CRE (Commission de Régulation de l’Energie). 

ERDF has organized its network in 93 local distribution units. These units, known as 

Centres, are grouped in 23 URE (Unité Réseau Electrique) and further aggregated in 8 

regions. During the sample period, Centres were autonomous (within limits) for taking 

decisions regarding capital and operational expenditures. In 2006, the company was 

reorganized and the decision making powers moved to the URE, with the Centres 

remaining as administrative units.  

Quality of electricity distribution has multiple aspects: the quality of the commercial 

service, the voltage quality and the continuity of supply being the most closely 

scrutinized by regulatory authorities.5 The quality of electricity distribution is regulated 
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by the CRE. For the continuity of supply (our main focus in this paper), the CRE 

measures quality by the minutes of interruption from which a series of exceptional 

events are removed (the so-called “criterion B”). During our sample period (2003-2005), 

the quality of electricity distribution, measured by the frequency of interruption per 

customer (SAIFI) or the total minutes of interruption (SAIDI) has improved (see Figure 

1).6 Notice however that the quality deteriorated sharply at the beginning of our sample 

period (2003) and remains lower during the sample period compared to the beginning 

of the 2000s. As the quality appears to have deteriorated, the regulator has introduced 

in 2009 an incentive mechanism based on a quality target with rewards/penalties set 

according to the fulfilment of the objectives. In the current mechanism, the penalty for 

each minute of interruption across all customers above the target (55 

minutes/client/year in 2009) is 4 million € per minute with a cap on the total amount to 

be collected. To our knowledge, this incentive mechanism was not yet in place during 

the sample period.  

Figure 1:  Quality of electricity distribution (2000-2006) 
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4. METHODOLOGY 

We model the production process of a DSO using a multi-input, multi-output distance 

function. The distance function is input-oriented. In addition to the traditional inputs 

(capital and operating expenses), we add the number of interruptions (a quality 

variable) as a third input. That is, interruptions are introduced as a bad input (see 
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Giannakis et al., 2005 and Growitsch et al., 2009). The logic is that the operators can 

substitute between regular inputs (labour, capital etc.) and the inconvenience faced by 

the customers (interruptions).  The rational operator will look at the “price of 

interruptions” (e.g., the penalty imposed by the regulator) and compare it with the price 

of other inputs (e.g., labour) before deciding upon the optimal (cost minimising) mix of 

inputs to use. 

If the production technology (frontier) is known (which is rarely the case) we can 

measure the distance that each data point (firm) lies below the frontier by calculating 

the amount by which the input vector (x) can be proportionally reduced while holding 

the output vector (y) constant. That is, for each data point (x,y) we seek to find the 

biggest possible value of the scalar ρ such that  (x/ρ,y) remains within the feasible 

production set bounded by the frontier. This is illustrated (for the case of a 2-input 

technology) in Figure 2, where the distance that firm A is inside the frontier is equal to   

ρ =0A/0B. This distance (i.e., technical efficiency score) equals approximately 1.25 in this 

diagram, suggesting that the firm could reduce input usage by 20% and still produce the 

same output vector. 

Figure 2:  Input oriented technical efficiency 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In reality, the production frontier is rarely known. Instead it is estimated using sample 

data on a number of firms. This generally involves fitting an empirical frontier that aims 

to minimize these distances so that the frontier is a “tight-fit” to the data. In this paper 

we use parametric methods to estimate an input distance function. 

The input distance function may be defined on the input set, L(y), as: 
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 { }( , ) max : ( / ) ( )ID Lρ ρ= ∈x y x y , (1) 

where the input set L(y) represents the set of all input vectors, KR+∈x , which can 

produce the output vector, MR+∈y . That is, 

 { }( ) :  can produce KL R+= ∈y x x y . (2) 

( , )ID x y  is non-decreasing, positively linearly homogeneous and concave in x, and 

increasing in y. The distance function will take a value which is greater than or equal to 

one if the input vector, x, is an element of the feasible input set, L(y). That is, ( , )ID x y ≥1 

if x∈L(y). Furthermore, the distance function will take a value of unity if x is located on 

the inner boundary of the input set. 

Stochastic frontier analysis (SFA) 

Following Coelli et al (2003), a translog input distance function for the case of M outputs 

and K inputs is specified as 
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where i denotes the i-th firm in the sample of N firms.7 Note that to obtain the frontier 

surface (i.e., the transformation function) one would set Di=1, which implies the left 

hand side of equation (3) is equal to zero. 

Imposing homogeneity of degree +1 in inputs and rearranging we obtain 
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where * / Kiki kix x x= . 

The restrictions required for homogeneity of degree +1 in inputs are  
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and 

 
1

0
K

kl
l

β
=

=∑ ,  k=1,2,...,K,  and  
1

0
K

km
k

β
=

=∑ ,  m=1,2,...,M, (5) 

and those required for symmetry are  

 αmn = αnm,  m,n=1,2,...,M,  and  βkl = βkl,  k,l=1,2,...,K. (6) 

To estimate this model using SFA methods we replace the distance term with an error 

term that has two i.i.d. components. That is, we set ln i i iD v u− = − , where vi ~ |N(0, 2
vσ )| is 

a symmetric error to account for data noise and the ui is a one-sided error to account for 

technical inefficiency (TE). The technical efficiency score for the i-th firm is predicted 

using the conditional expectation: [exp( | )]i i iE u v u− − , which takes a value between 0 and 

1. The model is estimated using maximum likelihood (ML) methods. Note that prior to 

estimation the variance parameters, 2
vσ and 2

uσ  are re-parameterised as 

2 2 2/( )u u vγ σ σ σ= +  and 2 2 2
u vσ σ σ= +  for computational convenience. 

The ui term is often modelled as a truncated normal distribution, of the form 

. However, in this study we make use of the more generalised model 

proposed by Battese and Coelli (1995), which allows one to investigate the effects of 

various factors upon efficiency levels. In this model the inefficiency term is made an 

explicit function of a vector of exogenous characteristics, zi, by specifying that the ui are 

independently (but not identically) distributed as non-negative truncations of a general 

normal distribution 

  (7) 

where 0
1

J

i j ij
j

m zδ δ
=

= +∑  and the 0δ  and jδ  are unknown parameters to be estimated. 

Within this framework, the values of the unknown parameters in (4) and (7) are 

obtained simultaneously using maximum likelihood estimation. The expressions for the 

likelihood function and first partial derivatives are presented in Battese and Coelli 

(1993), as well as the expression for [exp( | )]i i iE u v u− − .  
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Shadow prices 

Furthermore, as well as measuring the TE scores, we also make use of the methods 

described in Grosskopf et al (1995) to derive measures of the input shadow prices from 

the curvature of the estimated distance functions. The input shadow prices are akin to 

marginal rates of substitution between inputs. We are particularly interested in the 

shadow price of quality that is an estimate of the cost of preventing one interruption. 

This information could be quite valuable in allowing one to assess the degree to which 

rewards for quality outcomes could influence the services provided. Shadow price 

information is obtained using the method outlined in Grosskopf et al (2005), Morrison 

Paul and Nehring (2005), and others. That is, we obtain ratios of shadow prices from the 

ratios of derivatives of the input distance function as: 

 ik i ik

il i il

v D x

v D x

∂ ∂=
∂ ∂

 (8) 

for the case of inputs, and  

 im i im

in i in

u D y

u D y

∂ ∂=
∂ ∂

 (9) 

for the case of outputs.  

 

An estimate of the shadow price of quality can then be derived from these ratios by 

assuming that the price of one of the inputs (e.g., OPEX) is known. 

 

In order to compute ratios of shadow prices, we compute input distance partial 

elasticities with respect to inputs:  
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and with respect to outputs: 
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These elasticities have also a direct interpretation as shadow shares. Shares of inputs in 

total input, for kis , and shares of outputs in total output, for mir . Moreover, combining mir  
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we compute scale elasticities at each point: 

∑
=

=
M

m
mii re

1

, (13) 

with 1,1 −=−> ii ee and 1−<ie  indicating increasing, constant or decreasing returns to 

scale, respectively. 

 

Furthermore, a well-behaved production function must satisfy some desirable 

properties, among them monotonicity and curvature conditions. Monotonicity implies 

that the input distance function analysed here has to be non-decreasing in inputs 

( 0≥kis ) and non-increasing in outputs ( 0≤mir ) (Färe and Primont, 1995). Curvature 

conditions imply that the input distance function satisfy convexity in outputs and quasi-

convexity in inputs. 

 

Unfortunately, we are unable to impose these behavioural conditions on the SFA 

estimation using traditional econometric techniques. The main reason is that these 

conditions cannot be introduced as simple restrictions on parameters. As a 

consequence, the unrestricted estimations can potentially show monotonicity and 

curvature violations at specific data points. In other words, incorrect computed values 

for shadow shares and shadow prices ratios at particular points.8  This is particularly the 

case in this study because the quality input has a particularly low average input share 

(around 5%).   

 

Parametric linear programming (PLP) 

 

In this paper, we proceed in two steps. After verifying that SFA results satisfy 

monotonicity restrictions for average values but not for extreme points, we recomputed 

the input distance function using a parametric linear programming approach (PLP).9 

 

Values of unknown parameters in equation (3) are obtained by using linear 

programming (LP) as follows: 

Min ∑
=

N

i
iD

1

ln ,  
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subject to the constraints that: 

0ln ≥iD ,     i = 1, 2, …, N, 

0≥kis ,          i = 1, 2, …, N,  k = 1, 2, …, K,      

0≤mir ,          i = 1, 2, …, N,  m = 1, 2, …, M, 

as well as to the same homogeneity and symmetry constraints in (4) and (5). 

 

5. DATA 

The selection and measurement of input and output variables is a key aspect of any 

efficiency analysis exercise. In this study we have drawn upon our knowledge of the key 

cost drivers in the French electricity distribution industry, along with reviewing the 

experiences gained in previous analyses. For example, see those studies surveyed in 

London Economics (1999) and Jamasb and Pollitt (2001), and more recent studies, such 

as Lawrence and Diewert (2006), Edvardsen et al (2006) and Jamasb et al. (2010). 

 

Output variables 

 

Three output variables are used in the present study: energy supplied, number of 

customers and the service area. The amount of energy supplied in giga-watt hours 

(GWH) is generally the first output variable thought of, since the aim of a distribution 

company is to “supply electricity to customers”. Although a distribution network 

operator cannot normally determine the amount of electricity distributed, it has to 

ensure that all its network assets have the capacity to deliver this energy to its 

customers. Hence, the total amount of energy supplied may be viewed as a proxy for the 

load capacity of the network. The measure used in this study is gross electricity 

distributed (which includes losses).  

The number of customers (CUST) is also used as an output variable in our model 

because we believe that this variable is needed to ensure that the model does not 

unfairly discriminate against those operators which sell smaller amounts of energy per 

customer. Furthermore, a large part of distribution activities (relating to metering 

services, customer connections, customer calls, etc.) are directly correlated to the 

number of customers. Note that our measure only includes Low Voltage (LV) customers, 
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since industrial customers who are connected to the Medium Voltage (MV) network are 

rather small in number. 

The surface covered in square kilometres (KM2) is a measure of network dispersion. A 

lot of network operations, such as routine maintenance, overhaul, vegetation 

management for overhead lines, etc. are closely linked to the length of MV and LV lines 

or, indirectly, to the size of the area served. Moreover, the reliability of a distribution 

network and therefore the level of quality of supply is often affected by the length of 

feeders, in other words, by customers’ density. In big cities, where the feeders are 

mostly short and underground, the number of outages should be lower than in less 

dense areas which tend to have a high proportion of overhead lines. As a consequence, 

the costs of repairs are expected to differ between urban and rural areas.  

The net effect of using these three output variables in our model is to ensure that the key 

aspects of output heterogeneity are captured, so that when we conduct benchmarking 

comparisons using technical efficiency measures, we are conditioning on these factors 

and hence comparing like with like. That is, not comparing distribution units like Lille 

with the Southern Alps, and so on.  Nevertheless, we are aware that with three output 

variables, we are unable to control for all environmental differences that could influence 

costs, such as influence of forests and mountainous terrain, ages of the assets, 

accessibility of lines or substations, climatic factors, etc. To mitigate this problem, we 

introduce control variables to explain differences on the estimated TE.  

 

Input variables 

 

The inputs used in electricity distribution are many and varied. In terms of capital inputs 

there are underground and overhead lines of various voltage levels, transformers, 

vehicles, computers, and so on. Plus we have various types of labour – technicians, 

engineers, managers, etc. – plus a variety of other materials and services. One could 

perhaps define dozens of input variables, but degrees of freedom limitations in the 

production model prevent us from doing that. Instead we have chosen to define only 

three input variables: two monetary inputs, the capital inputs (CAP) and the non-capital 

inputs (OPEX) and one physical (bad) input, the number of interruptions (NINT).  The 
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bad input is considered as an imperfect substitute to the other two inputs. Monetary 

inputs are expressed in 2005 prices using a gross industrial commodities price deflator. 

Capital is measured using gross (not depreciated) value. We have chosen gross in 

preference to net because we wish to avoid the situation where an operator that has 

conducted a lot of recent investment is labelled as inefficient because their net capital 

stock is high relative to others. In using this measure we implicitly make two 

assumptions. First we assume that asset age does not significantly affect service 

potential. Second we assume that all operators have assets with similar life spans and 

hence that annual service potential is proportional to the stock. These assumptions are 

arguably quite reasonable in the current study, since all the data come from a single 

distribution operator (ERDF) who defines and manages very similar policies for 

investment, operations and network asset development across the various local 

distribution units.10 

In terms of non-capital inputs, we use network operating expenses net of depreciation 

and interest as our aggregate measure of these items. These are the direct operational 

costs of local distribution units, excluding centralized network service support and 

overhead costs. These operational costs relate to day-to-day operations, such as: 

• operating, developing and maintaining distribution network assets: looking after 

substations and overhead lines, fault repairs, remote control and dispatching, and 

so on; 

• running connections services; 

• providing meter services and any other customer interventions; 

• relations with local authorities and customers; etc. 

 

We could have chosen to split this OPEX grouping into labour and non-labour groups, 

but given that labour expense dominates this category and that outsourcing is blurring 

the boundaries between these two categories, we decided to use a single variable. 

Finally, quality is measured as the total number of interruptions (NINT) – excluding 

short interruptions of three minutes or less.  

The total number of interruptions NINT has been calculated as follows: 
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 NINT = SAIFI × Total number of customers. 

According to the international standards relative to quality of supply, SAIFI (System 

Average Interruption Frequency) is the average number of sustained interruptions (>3 

min) experienced per customer served per year:  

 SAIFI = 
Total number of customer interruptions 

Total number of customers served
. 

Therefore, NINT represents the total number of outages. It includes unplanned 

interruptions, even those for which the distribution company is not responsible (e.g., 

due to transmission network outages), and also planned interruptions (e.g., to 

accommodate extensions, upgrades, etc.).  We do not exclude, as it usually done for 

regulatory purpose, outages due to exceptional events, as we believe that the distinction 

is rather artificial.   Nevertheless, we include the percentage of exceptional events as a 

control variable (on average 11% of the interruptions are labelled as exceptional) to 

take into account unobserved heterogeneity across centres such as different weather 

conditions.     

Control variables 

 

The estimated production technology is (implicitly) assumed to be identical for all the 

DSOs. To take into account local variations across DSOs, we define a number of control 

variables that can be used to investigate some of the reasons for variations in efficiency 

across different DSOs.11  

 

The variables that we consider are as follows: 

• UNDERG is the proportion of the network that is located underground (as opposed 

to being overhead on poles). We expect that the higher asset values for underground 

lines in CAP will be offset by the reduced maintenance requirements in OPEX and the 

reduced number of outages. However, there may be some other aspect to 

undergrounding that we have not captured in our model, and hence we include this 

variable to see if we can identify an additional effect. 

• DENSE is the proportion of customers that are located in towns involving less than 
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10,000 inhabitants.  

• AGE is the ratio of net book value to gross book value of assets. Hence it is an index of 

average asset age that varies between 0 and 1, with higher values indicating newer 

assets. 

• HVCON is the amount of high voltage capacity that is contracted to industrial 

customers divided by total transformer potential. It is an indicator of the degree to 

which industrial customers are important to the DSO. 

We consider that the production function is time-invariant. But electricity consumption 

and input uses, mainly outages and repairs, could be affected by changes in the demand 

and in weather conditions, included exceptional events. To take this into account, we 

incorporate the following context variables:  

• D2004 and D2005 are dummy variables that attempt to capture factors that vary 

from one year to another, such as the effects of temperature variations on demand 

patterns and the effects of storm events on outages. 

• EXNINT is the proportion of NINT that is due to exceptional events. 

• EXMINT is the proportion of MINT (minutes of interruptions) that is due to 

exceptional events. 

• GROWTH is the ratio of customer numbers in the previous year to customer 

numbers in the current year. 

 

Descriptive statistics 

 

We have access to a unique and comprehensive database covering 92 French DSOs 

(nearly all the DSOs in France) during a three-year period. All the DSOs have the same 

perimeter of activities and data are provided by a single source. The units of observation 

are the 92 ERDF centres (Paris is not included in this study). All the values reported in 

the tables are averages for the three-year period 2003-2005. Table 1 provides an 

overview of outputs, inputs and environmental factors. It illustrates the range of 

variation among centres, not only on size, measured by the number of residential 

customers and the surface served, but particularly in terms of the share of underground 
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lines and of small towns, as well as the percentage of outages, frequency and duration, 

due to exceptional events. 

 

Table 1: Output and input variables. Descriptive statistics (n=276) 

 

Variable Units mean std min max 

Inputs      

Customers (CUST) N 324,857 134,162 109,435 762,905 

Surface (KM2) km2 5,532 3,125 129 13,871 

Electricity (GWH) GWh 3,557 1,477 1,001 7,976 

Outputs      

Operational expenditures (OPEX) 103 € 22,804 8,401 10,575 57,591 

Capital (CAP) 103 € 636,134 220,018 247,464 1,250,115 

Number of interruptions (NINT) n 384,476 204,569 48,886 1,632,336 

Environmental factors      

Underground lines (UNDERG) ratio 0.39 0.19 0.13 0.88 

Small towns (DENS) ratio 0.44 0.23 0.00 0.86 

Assets age proxy (AGE) ratio 0.62 0.03 0.53 0.68 

Customers growth (GROWTH) % 1.97 1.81 -5.46 19.97 

HV industrial capacity (HVCO) ratio 0.24 0.06 0.14 0.42 

Exceptional events: 

 - Frequency (EXNINT) ratio 0.11 0.11 0.00 0.49 

  - Minutes (EXMINT) ratio 0.13 0.18 0.00 0.82 

Note: € 2005 prices. 

 

Table 2 presents ratios of output and input quantities reported across the customer 

density (CUST/KM2) quintiles. Depending on customer density, input and output mixes 

vary notably. On the one hand, electricity consumption per customer (GWH/CUST) is on 

average invariant across quintiles but, as expected, capital density (CAP/KM2) varies 

substantially across the customer density quintiles.12 On the other hand, operational 

costs per customer (OPEX/CUST) diminishes from 91.4 € to 58.9 € from the first to the 

fifth quintiles, while the frequency of interruptions (SAIFI=NINT/CUST) varies in a 

similar manner, being close to 1.53 per customer per year among centres in the low 

density quintile and close to 0.97 in the highest quintile.13 Finally centres in low-density 

areas have relatively more lines on poles and less underground lines.  
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Table 2: Production characteristics 
 

Outputs ratios Input / Output ratios 
Customers’ 

density 

quintile 
CUST  

KM2 

GWH      

CUST 

OPEX 

CUST 

CAP      

KM2 

NINT       

CUST 

 

Underground 

lines            

(%) 

Q1 23.0 11.0 91.4 63.9 1.53 22.4 

Q2 36.3 12.2 77.6 84.5 1.27 27.6 

Q3 55.5 12.2 73.4 118.4 1.33 32.6 

Q4 88.2 11.9 67.7 163.9 1.05 42.1 

Q5 1,223.0 10.6 58.9 1,384.0 0.97 69.6 

Mean 288.6 13.1 73.7 366.7 1.23 39.0 

Customers’ density quintiles: 0-30 (Q1), 30-46 (Q2); 46-71 (Q3); 71-114 (Q4) and 114 and + (Q5).  

6. RESULTS 

 

In this section we report the parameter estimates and the technical efficiency (TE) 

scores obtained using Stochastic Frontier Analysis (SFA) that includes the effects of the 

environmental variables and also those estimates obtained computing the same distance 

function model using Parametric Linear Programming (PLP) with monotonicity 

restrictions imposed. Finally, we report partial elasticities and quality shadow prices 

computed for the PLP model. 

Table 3 presents parameters of the distance function for both the SFA and the PLP 

models. Note that output (ym, m=1, …, M) and input (xk, k=1, ..., K) variables are in 

logarithms and also in deviations with respect to means and environmental factors (zj, 

j=1, …, J) in deviations with respect to means, except for dummy variables (z1 and z2). In 

the SFA model, x1 was chosen as the reference variable to impose homogeneity of degree 

+ 1.14 Therefore, x1 becomes the dependent variable and xk are replaced by x*
k=xk -x1 for k 

= 2, … k .  

 

Note that y1=CUST; y2= KM2; y3=GWH; x1=OPEX; x2=CAP; x3=NINT.  

Given that variables are expressed in logarithmic deviations from mean values, first 

order coefficients associated with outputs and inputs may be interpreted as distance 

function elasticities with respect to outputs and inputs at the sample mean, respectively. 

In both models these coefficients have the expected sign, negative for outputs elasticities 

( mir ) and positive for inputs ( kis ), and are very close each other. The only exception are 

the coefficients associated with the number of customers (y1=CUST) and energy 

supplied (y3=GWH) that are lower and higher, respectively, under the PLP model with 
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respect with SFA. Under the SFA model, in most cases these coefficients are statistically 

significant, with t-ratio tests higher than 1.7. Second order terms are significant for the 

squared capital variable (x2=CAP) and for the squared surface output (y2=KM2), but 

insignificant for most of the other terms. Summing up, the coefficients reported in Table 

3 show close results between SFA and PLP models at mean sample values. That is, 

independent of their stochastic and deterministic nature and the fact that SFA takes 

simultaneously into account the potential effect of environmental variables but may not 

always satisfy monotonicity properties at all points, as PLP does. 
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Table 3: SFA and PLP coefficients 

 

SFA PLP 
Explanatory variables 

Coef. (t-ratio) Coef. 

Intercept 0.154 ( 5.3) *** -0.221 

ln(x1) (OPEX) 0.501  0.501 

ln(x2) (CAP) 0.457 ( 9.2) *** 0.456 

ln(x3) (NINT) 0.041 ( 2.0) ** 0.043 

ln(x1).ln(x1) -0.706  -0.094 

ln(x2).ln(x2) -0.829 (-3.1) *** -0.211 

ln(x3).ln(x3) -0.136 (-1.7) * -0.056 

ln(x1).ln(x2) 0.699  0.124 

ln(x1).ln(x3) 0.007  -0.030 

ln(x2).ln(x3) 0.129 ( 1.1) 0.087 

ln(y1) (CUST) -0.757 (-15.4) *** -0.696 

ln(y2) (KM2) -0.101 (-5.3) *** -0.107 

ln(y3) (GWH) -0.106 (-2.4) ** -0.227 

ln(y1).ln(y1) 0.949 ( 1.6) * 0.263 

ln(y2).ln(y2) 0.028 ( 2.1) ** -0.014 

ln(y3).ln(y3) 0.284 ( 0.5) -0.392 

ln(y1).ln(y2) 0.004 ( 0.1) -0.136 

ln(y1).ln(y3) -0.658 (-1.2) 0.169 

ln(y2).ln(y3) 0.091 ( 1.6) * 0.027 

ln(x1).ln(y1) -0.288  -0.083 

ln(x1).ln(y2) 0.055  0.058 

ln(x1).ln(y3) 0.243  -0.042 

ln(x2).ln(y1) 0.188 ( 0.6) 0.065 

ln(x2).ln(y2) -0.052 (-1.2) -0.072 

ln(x2).ln(y3) -0.168 (-0.5) 0.048 

ln(x3).ln(y1) 0.100 ( 0.6) 0.017 

ln(x3).ln(y2) -0.003 (-0.2) 0.014 

ln(x3).ln(y3) -0.075 (-0.5) -0.006 

Environmental factors 
Intercept -0.266 (-1.8) *  
z1 (UNDERG) -0.226 (-6.2) ***  
z2 (DENSE) 0.025 ( 0.6)  
z3 (AGE) 0.629 ( 4.4) ***  
z4 (HVCON) -0.027 (-1.2)  
z5 (D2004) -0.005 (-0.3)  
z6 (D2005) -0.097 (-4.7) ***  
z7 (EXNINT) 0.007 ( 0.7)  
z8 (EXMINT) -0.007 (-1.2)  
z9 (GROWTH) -0.001 (-0.2)  
σ 0.008 (11.5) ***  

γ 0.174 ( 6.0) ***  
LLF 286.0   

***, **  and * significant at 1%, 5% and 10% level, respectively. 

Underlined parameters are calculated by applying the 

homogeneity conditions. Variables ln(ym) and ln(xk) are expressed 

in deviations from sample mean values. 
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Technical Efficiency (TE) 

 

In the SFA model γ= 0.174 implies that the error term is primarily associated with 

statistical noise. Of the environment factors (zj variables), we note that DENSE (z2), 

HVCON (z3), D2004 (z5), EXNINT (z7), EXMINT (z8) and GROWTH (z9), are statistically 

insignificant (at the 5% level). UNDERG (z1), AGE (z3) and D2005 (z6) are the only 

variables that are significant. Note that a positive (negative) coefficient corresponds to a 

decreasing (increasing) effect on technical efficiency. 

The coefficient of UNDERG (percentage of underground lines) is negative. As expected, 

this factor has a positive effect on efficiency, because underground lines are less 

susceptible to storm damage, etc. However, the coefficient of AGE (the ratio of net 

(depreciated) to gross capital in book values) is positive, implying a negative effect on 

efficiency. It was expected that this factor would have a positive effect on efficiency, 

because we expected that newer assets would require less maintenance. However, 

perhaps newer assets have more “teething problems” and hence require extra 

adjustments in the early years.  

The technical efficiency of the ERDF Centres is improving over time with an average TE 

score of 87.61% in 2003, 88.16% in 2004 and 93.27% in 2005. Furthermore, all the 

Centres have a higher technical efficiency score in 2005 compared to 2003. These 

improved performances are partially explained by year-specific factors such as 

variations in weather conditions, as both the dummy variables for the year 2004 and 

2005 have a negative sign and D2005 is significant at the 1% level. Alternatively, the 

Centres could be improving their performance by making a better input use. But, 

unfortunately, with a limited time frame, we cannot screen between permanent (better 

management) and temporary effects (weather conditions) even though, as indicated 

before, the effect of outages due to exceptional events (EXNINT and EXMINT) on TE 

appear to be non-significant.     

Table 4 reports average technical efficiency (TE) scores for the SFA and PLP models by 

quintiles of customers’ density, quality (SAIFI) and underground lines (%). As expected, 

SFA technical efficiency scores are higher than PLP scores, 0.897 vs. 0.828 on average.15 
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This is due to the role played by noise under the SFA model, as indicated before. The 

Pearson correlation between the two sets of scores is 0.708. 

In both cases, SFA and PLP, TE scores show the same patterns, increasing with customer 

density, better quality (SAIFI) and with the percentage of underground lines. This 

confirms that TE in energy distribution is mainly driven by customer density and quality 

considerations. Even if underground lines imply huge capital investment, compared 

with surface lines, at the end of the day extra capital costs are compensated by 

diminishing OPEX costs and frequency of interruptions. In order to identify these 

relationships among inputs, we turn now to a deeper study of the underlying production 

technology, looking at distance function elasticities and shadow prices at all points (92 

Centres, 3 years). For this purpose, we rely exclusively on PLP results. Unfortunately, 

but as expected, the estimated SFA technology did not satisfy all monotonicity 

restrictions at all data points.16 

Table 4: SFA and PLP Technical Efficiency scores by quintiles 

 

SFA PLP 

Quintiles Customers’ 

density 

quintiles 

Quality 

quintiles 

(SAIFI) 

Underground 

lines  

quintiles 

Customers’ 

density 

quintiles 

Quality 

quintiles 

(SAIFI) 

Underground 

lines  

quintiles 

Q1 0.803 0.853 0.783 0.664 0.755 0.688 

Q2 0.843 0.870 0.843 0.807 0.783 0.805 

Q3 0.858 0.879 0.872 0.822 0.832 0.833 

Q4 0.915 0.907 0.925 0.884 0.871 0.881 

Q5 0.981 0.960 0.982 0.861 0.878 0.866 

All 0.897 0.897 0.897 0.828 0.828 0.828 

Customers’ density quintiles: 0-30 (Q1), 30-46 (Q2); 46-71 (Q3); 71-114 (Q4) and 114 and + (Q5). 

Quality quintiles (SAIFI): 1.9+ (Q1); 1.9-1.5 (Q2); 1.5-1.26 (Q3); 1.26-1.0 (Q4); 1.0-0.0 (Q5).  

Underground lines quintiles: 0-0.23 (Q1), 0.23-0.30 (Q2); 0.30-0.37 (Q3); 0.37-0.52 (Q4) and 0.52+ (Q5).  

 

Input and output distance function elasticities (PLP) 

 

Table 5 contains information on distance function elasticities with respect to inputs (ski) 

and outputs (rmi). They are computed using equations (10) and (11) and correspond to 

input shares and to output shares, respectively. Output elasticities contain useful 

information on the cost drivers of the DSOs and the scale economies.  For the stake of 

clarity, we consider output elasticities in absolute value.  At the aggregate level, the 

estimated output elasticities (with the PLP method) are 0.78 for CUST, 0.09 for KM2 and 

0.19 for GWH meaning that, a 10% increase in the number of clients, in the surface 



24 

 

covered or in the electricity distributed requires respectively a 7.8%, 0.9% and 1.9% 

proportional increase of all inputs. Thus, for an average DSO, the main cost driver is the 

number of clients. And, should all outputs increase proportionally, the input expansion 

required would be more than proportional as ei=Σirmi=-1.037<-1, implying decreasing 

returns to scale.17  

 

In Table 5, we report the input and output elasticities by customers’ density quintiles. 

Input combinations and use differ with customer density (see table 2) and technical 

efficiency is lower in low-density centres but this is partially explained by the lower 

percentage of underground lines. Interestingly, the distance function elasticities with 

respect to the number of customers increase dramatically with density while, 

simultaneously, surface and energy distributed elasticities decrease. For centres in high-

density areas, the main cost driver is the number of clients with a partial elasticity of 

CUST equal to 1.08 for the DSO in the fifth quintile of population density. At the same 

time, increasing the electricity distributed in high-density areas requires little input 

expansion, the partial elasticity of GWH is equal to 0.12, presumably because the 

network is dense and interconnections are numerous. Conversely, for the centres 

operating in low-density areas, increasing the electricity distributed requires a larger 

input expansion with a partial elasticity of GWH equal to 0.38 in the first quintile of 

customer density. Thus, it is relatively cheaper to meet demand expansion in high-

density regions compared to low-density ones but connecting additional customers is 

relatively more costly in the formers. To summarize, the main cost driver in high-density 

areas is the number of customers. In low-density areas, both the number of clients and 

the electricity distributed are the most significant cost drivers of the DSO. Taking the 

sum of partial elasticities, in the estimated production function, the scale elasticities go 

from increasing returns in low-density units to decreasing returns in high-density units.  
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Table 5: Distance function elasticities (PLP) 

 
With respect to inputs 

“input shares” 

With respect to outputs 

“output shares” Customers’ 

density 

quintiles 
Operationa

l costs 

(OPEX) 

Capital 

(CAP) 

Quality 

(NINT) 

Customers 

(CUST) 

Surface 

(KM2) 

Electricity 

distributed 

(GWH) 

Scale 

elasticity 

Q1 0.385 0.584 0.032 -0.387 -0.140 -0.381 -0.908 

Q2 0.447 0.524 0.029 -0.594 -0.100 -0.241 -0.934 

Q3 0.490 0.473 0.038 -0.700 -0.086 -0.203 -0.988 

Q4 0.538 0.426 0.037 -0.833 -0.064 -0.142 -1.034 

Q5 0.670 0.259 0.076 -1.079 -0.098 -0.122 -1.262 

Mean 0.533 0.424 0.046 -0.784 -0.092 -0.193 -1.037 

Customers’ density quintiles: 0-30 (Q1), 30-46 (Q2); 46-71 (Q3); 71-114 (Q4) and 114 and + (Q5). 
 

Regarding distance function elasticities with respect to inputs, we observe that the share 

of OPEX increases with customer’s density while the share of CAP decreases. As 

expected, partial elasticities are higher among units operating with proportionally lower 

quantities of a given input resource, and vice versa. Output expansion requires relatively 

more capital in low-density areas and relatively more operational expenditures in high-

density areas. The input share of quality is fairly stable and comparatively low, on 

average equal to 4.6%. 

 

The shadow price of quality (PLP) 

 

Using the estimated production function (with the PLP method to satisfy all the 

monotonicity restrictions), we can identify, for each observation, the input and output 

shadow price ratios. We are particularly interested in the input shadow price ratios 

NINT/OPEX and NINT/CAP. These shadow price ratios can be converted into a shadow 

price of quality by assuming a particular observed price for OPEX or CAP.  In the 

calculations below we assume that the observed price of OPEX is equal to 1€. The price 

of capital is more difficult to estimate, since it requires assumptions regarding 

depreciation and interest costs.  Hence we will focus on the shadow price estimate 

obtained from the NINT/OPEX  shadow price ratio. 

 

In our sample, the average shadow price of quality (in OPEX) is equal to 5.1€. This 

means that, in average, the DSO must spend an extra 5.1€ in operational expenditure to 

prevent one interruption or, as the mean interruption time is 59 minutes, it costs 0.086€ 

to prevent one minute of interruption.18 Multiplying by the number of customers, the 
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cost of avoiding one minute of interruption across all customers is estimated at 2.64 

million €.  

 

Starting in 2009, the French regulator put in place an incentive scheme for quality of 

electricity distribution. Any additional minute of interruption above (below) the quality 

threshold induces a penalty (reward). The penalty for an extra minute of interruption 

across all customers is set at 4 million € (3.89 millions € if expressed in 2005 price), 

with the total penalty capped at 50 million €. Based on that, we estimate that the 

regulated (marginal) price of quality is equal to 0.12.64€ per minute (in 2005 price). 

The estimated cost of quality (from our PLP results using sample data for the period 

2003-05) is smaller than the regulated price (applicable as from 2009). We can thus 

extrapolate that both the consumers and the DSO can benefit from an improvement in 

the network reliability. The French mechanism should, in principle, induce an 

amelioration of the quality. This is in contrast with the UK case, where according to 

Jamasb et al. (2010), the regulated price is (far) below the cost of increasing quality; 

accordingly, the UK incentive system fails to provide incentives for quality 

improvements.  

 

The shadow price of quality is not uniform across centres: the computed shadow price 

extreme values vary from 2.7€ to 15.7€. Shadow price levels mainly depend on the 

quality itself. More reliable networks tend to have a higher marginal cost of improving 

quality. This is nicely illustrated in Figure 3. The horizontal axis corresponds to quality 

(SAIFI) and the dots to the ERDF units (92 Centres, average values over the three year 

period analysed). Thus, as one would expect, marginal quality improvements tend to be 

more expensive as a distribution network approaches 100% reliability. Improving 

quality thus implies a convex cost relationship.   
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Figure 3: Quality shadow price 
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Note: Mean values by Centre over the 2003 to 2005 period. 

 

This is again apparent if one look at the shadow prices of quality per customers’ density 

quality in Table 6. Low density Centres (first quintile) have a shadow price of 4.5€ in 

OPEX price and of 97.1€ in Capital price, while those with high customers’ density (fifth 

quintile) have higher shadow prices of 7.5€ and 613.5, respectively.  

 

Table 6: Shadow price ratios (€ 2005 prices) 

 
Customers’ 

density 

quintiles 

Quality        

OPEX 

Quality        

Capital 

Q1 4.9 97.1 

Q2 3.7 94.9 

Q3 4.2 125.6 

Q4 4.2 140.5 

Q5 7.5 613.5 

All 5.1 254.1 

 

7. CONCLUDING REMARKS 

 

Electricity distribution utilities are expected to provide power to customers 24/24 

hours every day of the year.  To prevent outages and their related costs operators have 

the possibility to increase either maintenance costs or to make new investments. 

Therefore, there is an implicit cost associated with customers’ interruptions (and 

outages duration) in terms of operational costs (OPEX) and capital investments. 
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In this paper, we estimate the implicit cost of outages for the 92 DSO (Centres) of ERDF, 

the main distribution company in France, over the period 2003-05. For this purpose, we 

rely on a parametric distance function approach taking the number of customers’ 

interruptions over a year as a third input variable (along with OPEX and capital). This 

approach allows us to estimate and to compare production performances and to have a 

better understanding of the underlying production technology.  The production frontier 

provides information on the marginal rate of technical substitution between inputs (the 

shadow price), and we are particularly interested in the implicit price of quality 

improvement.  In our estimate, the shadow price of quality in OPEX price ranges from 

2.7€ to 15.7€.  And, as expected, the marginal cost of quality varies with quality 

delivered (SAIFI), implying convex costs of quality.   

 

Nowadays, electricity regulators introduce explicit reward and penalty scheme to 

regulate the quality of electricity distribution. The schemes aim at promoting efficient 

delivery of service quality by the DSOs.   For that, it is of prime importance to have a 

precise knowledge of the underlying production technology.  Indeed, the welfare 

maximizing level of service quality is such that the marginal benefit of quality is equal to 

the marginal cost (Sappington, 2005). The consumer’s valuation of quality can be 

constructed by specifying a price for the electricity that it is not delivered (see Fumagalli 

et al., 2007) but the marginal cost of quality is more difficult to assess.  Thanks to a very 

comprehensive dataset, we provide an estimate of this marginal cost.   

 

As from 2009, the French regulator introduced an explicit regulation of quality, it would 

be interesting to compare the regulated price of quality with its marginal cost to know 

whether the regulatory scheme in place is likely to be effective in promoting quality 

improvements (unlike the UK scheme according to Jamasb et al., 2010).  According to 

our estimates, the average shadow price for the period 2003-05, was 32% below the 

regulated price in 2009, suggesting that the French mechanism incentivizes the average 

DSO to deliver higher quality, given that the production technology has not changed 

substantially since this period.  But, to compare the like with the like, it would be 

interesting to replicate our methodology with more recent data. 
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Footnotes:  

                                                        
1 See Sappington (2005) for a complete survey of service quality regulation in public utility industries. 

2 This is also seen in a DEA study by Korhonen and Syrjänen (2003) of Finnish electricity distribution 

operators, where the inclusion of a TINT variable into the DEA model led to increases in technical 

efficiency for a number of firms. For example, see their Figure 3. However, note that these results need to 

be treated with caution because their DEA model did not include a capital measure, which could lead to 

substantial biases. 

3 In a previous study, Coelli et al (2007), we used an earlier version of this data set to conduct a 

comparison of the SFA and data envelopment analysis (DEA) approaches. 

4 Competition for concession contracts is not yet possible.   

5 See Fumagalli et al. (2007).  

6 System Average Interruption Frequency Index (SAIFI) and System Average Interruption Duration Index 

(SAIDI) indicate the average number and the average duration of interruptions (longer than 3 minutes) 

experienced by customer served per year, respectively. 

7 Note that in our application we have annual data on 92 units over a three year period.  Hence we have 

276 observations. Given the short time period we assume that there has been no technological progress 

over this period and hence pool the data as if it was a single year of data on 276 firms when estimating the 

production frontiers. 

8 See O’Donnell and Coelli (2005) for an application of a Bayesian approach to impose regularity 

conditions.  

9 For more details on PLP computations, see Coelli and Perelman (1999). 

10 The gross capital value is computed by ERDF using replacement values, with the exception of capital 

materials that have reached the end of their depreciation period (expected potential service life), in which 

case the gross purchase value is only adjusted for inflation.  
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11 Control variables are introduced only in the SFA model. 

12 But capital per customer (CAP/CUST) diminishes with consumer density.    

13 These observations might be seen as indicating that costs are mainly driven by the level of outages.  

However, the distance function estimates presented later show that it is dangerous to look at a few 

measures in isolation, and that the relationships are much more complex. The direction and the 

importance of these relations will depend, among others, on the complementarity/substitutability 

between OPEX, capital investments and quality. 

14 Results are insensitive to the choice of the reference variable, as illustrated in Coelli and Perelman 

(1996).    

15 The distance measures derived from the estimation of input distance functions are, by definition, equal 

or higher than 1.0. For presentation purposes, we transform them into technical efficiency scores, with 

values between 0 and 1.0, by taking the reciprocal. 

16 Monotonicity restrictions are not satisfied in 10.0% of cases.  Mainly two variables are concerned, on 

the output side GWH (y3=) and NINT (x3) on the input side. Note that in both cases, distance function 

elasticities are small (close to zero) at average values. 

17 Under the SFA model, average scale elasticity corresponds to increasing returns to scale. PLP results are 

however preferred as partial elasticities measured at each point satisfy the monotonicity conditions. 

18 Using a different methodology, Jamasb et al. (2010) estimate that the average cost of one minute of 

interruption is equal to 0.251£ in the UK for the period 1995-2002.   


