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Neoclassical
 

Production Function

We
 

will
 

assume a production function
 

of
 

the
 

Cobb-Douglas
 

form:

F[K(t), L(t), A(t)]  = A K(t)α
 

L(t)1-

 

α

where
 

K(t) is
 

the
 

physical
 

capital stock at
 

time
 

t, L(t) is
 

labor
 

and
 

A is
 

the
 constant level

 
of

 
total factor

 
productivity.

This Cobb-Douglas
 

function
 

is
 

homogeneous
 

of
 

degree
 

1. Therefore, it
 

is
 possible to write

 
it

 
in intensive form:

f[k(t)] = A k(t)α

where
 

k = K/L is
 

the
 

capital-labor
 

ratio.
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Exogenous
 

Growth
 

Model: The
 

Solow-Swan
 

Model

The
 

fundamental
 

equation
 

of
 

the
 

Solow-Swan
 

model
 

is
 

the
 

equation
 

of
 

the
 capital accumulation:

dk

dt
= sAkα

 
– (n + δ)

The
 

growth
 

rate of
 

the
 

capital-labor
 

ratio is:

dk/dt

dk
= sAkα

 

- 1

 
– (n + δ)

The
 

derivative
 

of
 

this
 

growth
 

rate with
 

respect to k is
 

negative.
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k

f(k)

This curve

 

is

 

the

 

graphical

 representation

 

of

 

the

 

production 
function

 

in intensive form, where

 k = K/L.

The

 

function

 

f(k) is

 

assumed

 

to 
concave.

Production function: graphical
 

representation
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k
k*

f(k*)

k(0)

f[k(0)]

E

f(k)

The

 

point A, whose

 

coordinates

 are (k(0);f(k(0)), is

 

the

 

initial level

 of

 

the

 

economy.

The

 

point E, whose

 

coordinates

 are (k*;f(k*)), is

 

the

 

steady

 

state 
of

 

the

 

function

 

f(k). This is

 

the

 long-term

 

level

 

of

 

the

 

economy.

A

Steady
 

state
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k
k*

f(k*)

k(0)

f[k(0)]

E

f(k)

The

 

straight line

 

(BC) is

 

the

 tangent to the

 

point E. 

On the

 

graph, the

 

slope

 

of

 

the

 tangent appears

 

to be

 

0. This 
slope

 

is

 

the

 

instantaneous

 

rate of

 variation of

 

the

 

function

 

f(k) at

 the

 

value k=k*.

Slope

 

of

 

the

 

tangent = f’(k*)

The

 

growth

 

rate of

 

this

 

economy

 at

 

the

 

steady

 

state (E) is

 

equal

 

to 
0.

A

CB

Growth
 

rate at
 

the
 

steady
 

state
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The
 

instantaneous
 

rate of
 

variation (or derivative
 

at
 

a point) is

f ’(k*) = lim
k  k*

f(k) –
 

f(k*)

k –
 

k*
= lim

h  0

f(k*+ h) –
 

f(k*)

h

For our
 

production function, the
 

instantaneous
 

rate of
 

variation at
 the

 
steady

 
state point is

f ’(k*) = 0

This means
 

that
 

the
 

production per
 

worker
 

does
 

not
 

grow
 

at
 

the
 steady

 
state.

How
 

to calculate
 

the
 

instantaneous
 

rate of
 

variation ?
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The
 

level
 

of
 

product
 

per
 

worker
 

is
 

f [k(0)] when
 

k = k(0) and
 

is
 

f (k*) when
 k = k*.

The
 

difference
 

in level
 

(f (k*) -
 

f [k(0)]) is
 

the
 

increase
 

in product
 

per
 worker

 
when

 
k increases

 
from

 
k = k(0) to k = k*.

We can also calculate the growth rate (g) of
 

the
 

product
 

per
 

worker
 when

 
k increases

 
from

 
k = k(0) to k = k*. It

 
is

 
the

 
geometric

 
mean

 
of

 
all

 the
 

instantaneous
 

rates of
 

variation between
 

k = k(0) to k = k*:

where
 

n is
 

the
 

number
 

of
 

compounding. When
 

n  

 
compounding

 
is

 continuous.

Growth
 

rate between
 

two
 

points on the
 

curve
 

(e.g.
 

between
 

A and
 

E)

g = [f ’(k(0)) ×
 

… ×
 

f ’(k*)] 1/n
for all

 
k 

 
[k(0), k*] and

 
n  

n derivatives

dk/dt
k

=
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k
k*

f(k*)

k(0)

f[k(0)]

E

f(k)

The

 

instantaneous

 

rates of

 variation between

 

k(0) and

 

k* are 
all

 

different

 

since

 

the

 

function

 

is

 non-linear.

In fact, the

 

instantaneous

 

rates 
of

 

variation decrease

 

as k 
increases

 

from

 

k(0) to k*. The

 slopes

 

are increasingly

 

weaker.

The growth rate between A and

 E is

 

the

 

geometric

 

mean

 

of

 

all

 the

 

instantaneous

 

rates of

 variation

A

CB

Growth
 

rate between
 

A and
 

E
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If we
 

know
 

the
 

values for f[k(0)] and
 

f(k*) and
 

the
 

number
 

of
 

periods
 

(e.g.
 number

 
of

 
years) that

 
elapsed

 
for the

 
economy

 
to go from

 
k(0) to k*, then

 
we

 can
 

calculate
 

the
 

average
 

growth
 

rate between
 

f[k(0)] and
 

f(k*) :

R = {ln f(k*) –
 

ln f[k(0)]} 1/t

where
 

t is
 

the
 

number
 

of
 

periods
 

= (number
 

of
 

dates –
 

1). (e.g.
 

1991, 1992 
and

 
1993 are 3 dates but 1991-1992 and

 
1992-1993 are two

 
periods).

This average
 

growth
 

rate R is
 

calculated
 

by using
 

the
 

geometric
 

mean
 where

 
the

 
growth

 
rate compound continuously. If the

 
number

 
of

 
periods

 
is

 1, then
 

t = 1 and
 

the
 

growth
 

rate is
 

just
 

the
 

continuous
 

growth
 

rate between
 f[k(0)] and

 
f(k*).

This continuous
 

growth
 

rate is
 

also
 

called
 

the
 

speed of convergence. The
 name

 
comes

 
from

 
the

 
result

 
that

 
the

 
steady

 
state E is

 
stable, hence

 
the

 economy
 

converges to E regardless
 

of
 

its
 

initial start
 

k(0) (except
 

k (0) = 
0).

Calculation
 

of
 

average
 

growth
 

rate between
 

A and
 

E
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We
 

can
 

obviously
 

use the
 

growth
 

rate to calculate
 

the
 

level
 

of
 

f(k*) if 
we

 
know

 
f[k(0)]: 

f(k*) = exp(Rt) f[k(0)]

To sum
 

up, the
 

growth
 

rate of
 

f[k(t)] is
 

a non-linear
 

function
 

of
 

k(t). It
 

decreases
 as k(t) increases

 
due to the

 
concavity

 
of

 
the

 
production function.

Therefore, for linear
 

estimation purposes, it
 

is
 

necessary
 

to compute
 

a growth
 rate that

 
is

 
linear

 
in k(t) and

 
could

 
be

 
a reasonable

 
approximation of

 
the

 
true

 growth
 

rate.

Calculation
 

of
 

average
 

growth
 

rate between
 

A and
 

E (cont.)
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k
k*

f(k*)

k(0)

f[k(0)]

E

f(k)

Graphically, to approximate

 

the

 growth

 

rate between

 

the

 

points A 
and

 

E, one

 

has

 

to draw

 

a line

 (DF) passing through

 

A and

 

E.

The

 

slope

 

of

 

this

 

straight line

 gives

 

the

 

approximation of

 

the

 growth

 

rate of

 

the

 

concave 
function.

The

 

farther

 

A is

 

located

 

from

 

E, 
the

 

worse

 

is

 

the

 

approximation. 
In our

 

graph, the

 

approximation 
is

 

bad

 

because A is

 

too

 

far from

 E.

A

CB

Graphical
 

linear
 

approximation of
 

the
 

growth
 

rate

D

F
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Analytical
 

linear
 

approximation of
 

the
 

growth
 

rate

To compute
 

an analytical
 

linear
 

approximation of
 

the
 

growth
 

rate, one
 

has
 to linearize

 
the

 
growth

 
rate function

 
(dk/dt)/k around

 
its

 
steady

 
state. To 

do so, we
 

apply
 

to this
 

function
 

a Taylor expansion of
 

order
 

1 around
 

the
 steady

 
state k* to obtain

 
a linear

 
function:





 
k k = k*

(k –
 

k*)dk/dt
k

dk/dt
k*

= +

dk/dt

k

dk/dt

dk
= sAkα

 

- 1

 
– (n + δ)

In the
 

Solow-Swan
 

model
 

the
 

growth
 

rate is

At
 

the
 

steady
 

state, the
 

growth
 

rate is
 

0, then
 

:

sAkα
 

- 1

 
=  (n + δ)
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Analytical
 

linear
 

approximation of
 

the
 

growth
 

rate



 
(sAk(t)α

 

- 1

 

– (n + δ))



 
k k(t) = k*

(k(t) –
 

k*)dk/dt
k

= +

dk/dt

dk
= – (1 – α) (n + δ)

=
 
0                    +  (α

 
–

 
1)sA(k*)α

 

- 2 (k(t) –
 

k*)

where
 

[(k(t) –
 

k*)/k*] is
 

the
 

rate of
 

variation of
 

k(t) around
 

the
 

steady
 

state. 
This new growth

 
function

 
is

 
linear

 
in k(t). An increase

 
in k(t) yields

 
a decrease

 in the
 

growth
 

rate of
 

–
 

(1 –
 

α) (n + δ)/k*.

sA(k*)α
 

- 1

 
– (n + δ)

Let us approximate
 

the
 

nonlinear
 

Solow growth
 

rate function
 by a Taylor polynomial of

 
the

 
first

 
order:

Since
 

sAkα
 

- 1

 

=  (n + δ) at
 

the
 

steady
 

state, we
 

can
 

further
 

simplify
 

to:

k(t) –
 

k*

k*
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log –
 

linear
 

approximation of
 

the
 

growth
 

rate

A more convenient
 

way
 

for econometric
 

analysis
 

is
 

to log –
 

linearize
 

the
 original growth

 
rate function. It

 
allows

 
to interpret

 
the

 
result

 
as a percentage

 deviation
 

from
 

the
 

steady
 

state. The
 

log –
 

linearization
 

consists
 

in applying
 

a 
first-order

 
Taylor expansion of

 
log(k) around

 
log(k*). 

dk/dt

dk
= sAkα

 

- 1

 
– (n + δ)Let us write in log:

= sA
 

e(α

 

–

 

1) log k(t)

 
– (n + δ)

d log k(t)

dt

Let us define
 

g[log k(t)] = sA
 

e(α

 

–

 

1) log k(t)

 
– (n + δ). Let us approximate

 
this

 function:





 
log k(t) log k(t) = log k*

(log k(t) –
 

log k*)g[log k(t)] 
g[log k(t)]  =

 
g[log k*]  +
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log –
 

linear
 

approximation of
 

the
 

growth
 

rate

= – (1 – α) (n + δ)  (log k(t) –
 

log k*)
d log k(t)

dt

g[log k(t)]  =
 

sA
 

e(α

 

–

 

1) log k*

 
– (n + δ)   +   (α

 
–

 
1) sA

 
e(α

 

–

 

1) log k*

 
(log k(t) –

 
log k*)

=
 

0                     +   (α
 

–
 

1) (n + δ)  (log k(t) –
 

log k*) 

Therefore, the
 

log –
 

linear
 

form
 

of
 

the
 

growth
 

rate function
 

is:

And d{d log k(t)/dt}

d log k(t)
= – (1 – α) (n + δ)  

where
 

β
 

=
 

–
d{d log k(t)/dt}

d log k(t)
is

 
called

 
the

 
speed of

 
convergence

 
in the

economic
 

growth
 

literature. 1% deviation
 

from
 

k* yields
 

a percentage
 

change 
in the

 
growth

 
rate of

 
k equal

 
to  –

 
(1 –

 
α) (n + δ) when

 
the

 
production function

 is
 

Cobb-Douglas. 
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log –
 

linear
 

approximation of
 

the
 

growth
 

rate

In fact, we
 

are interested
 

in the
 

growth
 

rate of
 

income
 

per capita rather
 than

 
in the

 
growth

 
rate of

 
the

 
capital –labor

 
ratio. But, they

 
are the

 same:

dy(t)/dt

y(t)
= 

d lny(t)

dt
=

d ln k(t)α

dt
=

d [α
 

ln k(t)]

dt
=

d [α
 

ln k(t)]

dk(t)

d k(t)

dt
.

=  α
dk/dt

dk

And
 

y(t) = k(t)α
 

=> 
y(t)

y*

k(t)α

y*
=

k(t)α

(k*)α
= Taking

 
the

 
log :

log 
y(t)

y*
= a  log

k(t)

k*
=>   log y(t) –

 
log y* = α

 
[log k(t) –

 
log k*]. Then

= – β
 

(log k(t) –
 

log k*) => 
d log k(t)

dt
= – β

d log y(t)

dt
1
α

1
α

(log y(t) –
 

log y*)
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log –
 

linear
 

approximation of
 

the
 

growth
 

rate

As a result:

= – β
 

(log y(t) –
 

log y*)                           (1)
d log y(t)

dt

The
 

speed of
 

convergence is
 

the
 

same
 

for the
 

income
 

per capita as for the
 capital-labor

 
ratio.

Equation
 

(1) is
 

a first-order
 

differential
 

equation
 

of
 

the
 

type:

log y’(t) + β
 

log y(t)  =  β
 

log y*

where
 

log y’(t) is
 

the
 

time
 

derivative
 

of
 

log y(t). It
 

can
 

be
 

solved
 

in four steps:
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Solution of
 

the
 

linear
 

differential
 

growth
 

equation
 

of
 

the
 

first-order

First
 

step: Solution of

 

the

 

corresponding

 

homogenous

 

equation

 

z’(t) + β

 

z(t)  = 0

z’(t)
z(t)

=  –
 

β
 

=> z’(t)
z(t)

dt
 

=   –∫ ∫ β
 

dt

Let us first
 

define: z(t) =
 

log y(t) 

=>   log z(t) + b1

 

=  –
 

βt + b2

=>   log z(t)  =  –
 

βt + b            where
 

b = b1

 

+b2

=>   e log z(t)

 
=  e –

 

βt + b

=>   z1

 

(t) =  e–

 

βt

 
eb

=>   z1

 

(t) =  e–

 

βt

 
θ

 
where

 
θ

 
= eb

Second step: Particular

 

solution of

 

the

 

equation

 

z’(t) + β
 

z(t)  =  β
 

z*
An obvious

 
particular

 
solution is

 
at

 
the

 
steady

 
state where

 
z’(t) = 0, then

 
z2

 

(t) =z*.
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Solution of
 

the
 

linear
 

differential
 

growth
 

equation
 

of
 

the
 

first-order

Third
 

step: General

 

solution of

 

the

 

equation

 

z’(t) + β
 

z(t)  =  β
 

z*

This is
 

the
 

sum
 

of
 

the
 

solution of
 

the
 

homogenous
 

equation
 

and
 

the
 

particular
 solution of

 
our

 
equation:

z(t)  =  z1

 

(t) + z2

 

(t)  =  e –
 

βt

 
θ

 
+ z*                (2)

Fourth
 

step: Final solution of

 

the

 

equation

 

z’(t) + β
 

z(t)  =  β
 

z*

What
 

is
 

left
 

to do is
 

to give
 

a value for θ. This value can
 

be
 

determined
 

by a 
value for z(t) at

 
a particular

 
date t. For example, the

 
initial condition is

 
a good

 candidate: z(0) for t = 0. Then, at
 

t = 0,

z(0) = e0

 
θ

 
+ z*      =>    θ

 
= z(0) –

 
z* 

Substituting
 

in (2) for θ
 

: 

z(t) = e –
 

βt

 
[z(0) –z*] + z*   =>   z(t) = (1 –

 
e –

 

βt) z* + e –
 

βt

 
z(0)
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Solution of
 

the
 

linear
 

differential
 

growth
 

equation
 

of
 

the
 

first-order

Eventually, as z(t) = log y(t), the
 

solution of
 

our
 

differential
 

equation
 

is

log y(t)  =  (1 –
 

e –
 

βt) log y*  +  e –
 

βt

 
log y(0)                  (3)

If we
 

have data on GDP per capita in an initial date and
 

a terminal 
date, then

 
we

 
can

 
estimate

 
the

 
speed of

 
convergence β. If we

 substract
 

log y(0) from
 

both
 

sides
 

of
 

(3) and
 

substitute
 

for y* then

where
 

β
 

= (1 –
 

α)(n + δ)   and
 

y* = (k*)α

log y(t) –
 

log y(0)  =  (1 –
 

e –
 

βt) log + (1 –
 

e –
 

βt) log y(0)1
1 -

 
α

[log sA –
 

log (n + δ] 

In the
 

Solow-Swan
 

model, the
 

growth
 

of
 

income
 

(left-hand
 

side) is
 

a function
 

of
 the

 
determinants

 
of

 
the

 
steady

 
state and

 
the

 
initial level

 
of

 
income.
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